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Abstract. The structure groups and monoids of set-theoretic solutions to the Yang–Baxter Equa-
tion can be regarded as deformations of free abelian groups resp. monoids. In this work, we obtain
explicit formulae for the growth series of the structure groups and monoids of transposition and
dihedral quandles, and of the structure groups of permutation quandles. These quandles provide
important families of YBE solutions. The intricate nature of our formulae confirms that, while pre-
serving many nice properties of free abelian groups, even the simplest structure groups and monoids
are remarkably rich objects. We also establish some structural properties and easily computable
normal forms for the monoids considered.

Introduction

The free abelian group on a set X admits the following standard presentation:

FAb(X) = ⟨ ex : x ∈ X exey = eyex : x, y ∈ X ⟩ .

This presentation suggests the following natural deformation. Consider a map r : X ×X → X ×X
sending (x, y) to (λx(y), ρy(x)), and put

(0.1) As(X, r) =
〈
ex : x ∈ X exey = eλx(y)eρy(x) : x, y ∈ X

〉
.

This defines the structure group (alternatively called the associated, enveloping, or adjoint group)
of (X, r). Imposing appropriate conditions on r, one forces As(X, r) to preserve the desired prop-
erties of FAb(X). For example, if X is finite and r is a solution to the Yang–Baxter Equation

(r × IdX)(IdX ×r)(r × IdX) = (IdX ×r)(r × IdX)(IdX ×r),

that is involutive, meaning that r2 = IdX×X , and non-degenerate, that is, λx and ρx are bijections
for all x ∈ X, then As(X, r) is Bieberbach [13] and Garside [8]. In particular, this gave the first
systematic way of constructing Garside groups going beyond the foundational example of spherical
Artin–Tits groups.

In the present work, we go in an orthogonal direction, and show that even for very simple maps r,
the group As(X, r) might significantly differ from FAb(X). The invariant that we chose to measure
this difference is the growth series. Recall that the growth series of a group G with respect to a
generating set S is the formal power series defined as

GG,S(t) =
∞∑
n=0

#

(
S
n \

(
n−1⋃
i=0

S
i

))
tn =

∑
g∈G

tlS(g),

where S = S ∪ {s−1 : s ∈ S}; Sk
= {s1s2 · · · sk : s1, . . . , sk ∈ S} for k ⩾ 1 and S

0
= {1G}; and

lS(g) is the minimal number of elements of S needed to produce (multiplicatively) g. The growth
series measures how fast the words in the letters s±1, s ∈ S, cover the entire group G when the
word length is allowed to grow. The generating set is omitted in notations when clear from the
context. Thus, for As(X, r), we will always take S = {ex : x ∈ X}. For the free abelian group
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Zd = FAb({1, . . . , d}) which is also the structure group of the solution r(x, y) = (y, x) on the set
X = {1, . . . , d}, we have

(0.2) GZd(t) =

(
1 + t

1− t

)d

.

The typical questions on growth series are their rationality and asymptotic behaviour. Explicit
computation of the entire series is usually beyond reach, since it requires a fine understanding of
how the given group works. Some notable exceptions are [2, 4, 7, 19]. The reader is directed to the
introductory book [17] for basics on the growth of groups1.

The question of determining the growth series of structure groups was first explicitly raised
in [21]. To our knowledge, no concrete computations have been carried out so far. According
to [16], the structure group of an invertible non-degenerate YBE solution is related to the structure
group of its derived solution of the “only-left-deformed” form

(0.3) r▷(x, y) = (x ▷ y, x)

by a bijective length-preserving group 1-cocycle. Thus, the two structure groups have identical
growth series. This explains why solutions of the form (0.3) are particularly important. They can
also be regarded as quandle solutions, but since we do not use the quandle theory here, we will
only mention connections to quandles as remarks for specialists.

In this work, we provide computations for four important families of YBE solutions. Concretely,
we take as X:

(1) the set Sd of all permutations of d elements;
(2) the set Td of all transpositions (i, j) in Sd;
(3) the set Dd of all symmetries of a regular d-gon;
(4) the set Rd of all reflections inside Dd.

As r, we take the map r▷, where ▷ is the conjugation operation:

x ▷ y = xyx−1.

For any group, or a union of conjugacy classes thereof, r▷ is a bijective non-degenerate YBE solution.
Our four solutions, called, respectively, permutation, transposition, dihedral and reflection solutions
in what follows, correspond to conjugation quandles (and their subquandles) of symmetric and
dihedral groups. Note that the name dihedral quandle historically refers to (Rd, ▷) rather than to
the whole (Dd, ▷); we will not use this name to avoid confusion. The map r▷ will be omitted in
notations when clear from the context; thus, As(X) stands for As(X, r▷).

Our first results are the following formulae for the growth series of As(Td) and As(Rd):

GAs(Td)(t) =
d−1∏
k=2

(1 + kt) · 1 + t2

1− t
+ t ·

d−1∏
k=1

(1 + kt) ·

(
d−1∑
k=1

k

1 + kt

)
,

GAs(Rd)(t) =
2dt

1− t
+ 1 + (d− 1)t2 for odd d.

They are derived from the relation we establish between these growth series G̃ and the growth series
G for Sd with respect to the generating set Td (respectively, Dd w.r.t. Rd):

(0.4) G̃(t) = t · d
dt
G(t) + 1 + t2

1− t2
G(t),

and classical formulae for GSd,Td
and GDd,Rd

. Note that Eq. (0.4) actually holds for a large family
of groups, including all Coxeter groups of ADE type (Theorem 1.3).

1Note however a misprint in Example 7 from [17] treating the case G = Zd. For d = 3, the nth coefficient should
be a3(n) = 4n2 + 2 instead of 4n2 + 4n+ 2.
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We further compute the growth series of the structure groups of entire permutation and odd
rank dihedral solutions (actually, of a more general type of solutions, see Theorem 2.2):

GAs(Sd or Dd)(t) = γd ·
(
1 + t

1− t

)cd

− (1 + t)2 ·

 ∑
k̄∈Zcd−1

(
γd −#

(
cd−1∏
i=1

Ckii

))
· t|k̄|

 .

Here γd is the size of the commutator subgroup and cd the number of conjugacy classes of Sd or Dd;
the Ci are the conjugacy classes different from {1}; k̄ stands for a tuple of integers (k1, . . . , kcd−1);

and |k̄| =
∑cd−1

i=1 |ki|. For Sd, the cumbersome correction term in the end of the formula is a
polynomial except for d = 4, and can be explicitly computed starting from the multiplication table
for the conjugacy classes of Sd. The products of conjugacy classes of Sd are an interesting subject in
itself, see for instance [1] and references therein. In particular, asymptotically the growth behaviour
of As(Sd) is close to that of a free abelian group, except for d = 4. For dihedral groups Dd with
odd non-prime d, the correction term is not a polynomial.

In parallel to the structure group, one can define the structure monoid As+(X, r) of (X, r) using
the same recipe as (0.1), but this time regarding it as a monoid presentation. This object tends to
better capture the nature of the map r; see for instance [5,6] and references therein. We note here
that the growth series of As+(X, r) coincides with the Hilbert–Poincaré series of the associated
structure algebra K(X, r) over a field K; see for instance [12, 14] for a detailed study of the latter
object.

In Theorem 3.10, we explicitly compute the growth series of the structure monoids As+(Td).
The result possesses a surprisingly compact yet intricate presentation when these monoids are
considered simultaneously for all d:∑

d⩾0

1

d!
GAs+(Td)

(t)xd = exp

(
(1− tx)−t − 1− t4x

t2(1− t2)

)
.

This should be compared with the much simpler growth series of the free abelian monoid Nd
0:

(0.5) GNd
0
(t) =

(
1

1− t

)d

,
∑
d⩾0

1

d!
GNd

0
(t)xd = exp

(
x

1− t

)
.

The key ingredient of our computation is a structural study of the monoid As+(Td), interesting
per se. We decompose As+(Td) as a semilattice of subsemigroups, isomorphic to the partition
semilattice of rank d. Each subsemigroup is a direct product of what we call the full transposition
semigroups FTSk. The latter are then injected into the direct product Sk×N, where the second
component keeps track of the length. This is a semigroup version of the group injection As(Td) ↪→
Sd×Z from [15], which does not work for the entire monoid As+(Td).

Finally, Theorem 5.16 settles the case of the structure monoids of Rd both for odd and even d:

GAs+(Rd)
(t) = 1 + d ·

t+

∑
c|d

φ(c)

c

 t2 + τ(d)
t3

1− t
+ τ

(
d

2

)
t4

2(1− t)2

 ,

where τ is the number-of-divisors function, and φ is Euler’s totient function. At the heart of
this computation are once again a semilattice decomposition of As+(Rd), a reduction of necessary
computations to the extremal subsemigroups of this semilattice, and the injection of the latter
into elementary semi-direct products with easily extractable length. This injection is realised using
easily computable numeric invariants and simple normal forms, which surprisingly turn out to be
more approachable for the reflections R∞ inside infinite dihedral groups D∞ (see Section 4). We
then return to the finite case by reducing modulo d.

Acknowledgements. The authors thank Eddy Godelle and Stéphane Launois for their con-
tributions to the working group on the growth of structure groups, which gradually reduced to a
working subgroup containing the three current authors.
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1. How structure groups of transposition- and reflection-type solutions grow

In this section, we explicitly compute the growth series of the structure group of any transposition
solution Td, and any reflection solution Rd with odd d. Our computations can be adapted to a
more general class of solutions, presented below.

Definition 1.1. A C̄-presentation of a group is a presentation involving relations of two types only:

• conjugation relations a ▷ b = c for certain triples of generators where a ▷ b = aba−1;
• power relations of the form ap = 1, for certain generators a and certain integers p ⩾ 2 (at
most one relation per conjugacy class).

A group admitting such a presentation is called a C̄-group.

This definition goes back to [15]; see there for examples of very different nature. The letter C in
the name stands for conjugation, and the bar for the quotient by powers of generators, as in the
finite quotients of certain structure groups.

We will work here with a particular type of C̄-groups:

Definition 1.2. A C̄-presentation of class 2 is a C̄-presentation whose set of generators C is a
single conjugacy class, and which has exactly one power relation, a2 = 1.

Examples include:

(1) the symmetric group Sd generated by the set of transpositions Td, and, more generally,
Coxeter groups of ADE type;

(2) the dihedral group Dd for odd d, generated by the set of reflections Rd;
(3) finite quotients of the structure groups of finite connected involutory quandles [16].

Endow C with the YBE solution r▷ from (0.3). We will first show how to express the growth series
of the structure group As(C) (with respect to the standard generators ex) in terms of the growth
series of the original group G with respect to the generating set C:

Theorem 1.3. Let G be a group with a C̄-presentation of class 2, with a set of generators C. Then
one has the following relation between two group growth series:

(1.1) GAs(C)(t) =
1 + t2

1− t2
· GG,C(t) + t · d

dt
GG,C(t)

Before giving a proof, let us explore the consequences of this relation in our favourite examples.
First, take G = Dd and C = Rd for odd d. The reflection lengths of symmetries of a regular d-gon
look as follows:

(1) 0 for the identity:
(2) 1 for all d reflections;
(3) 2 for all d− 1 non-trivial rotations.

Thus

GDd,Rd
(t) = 1 + dt+ (d− 1)t2.

Plugging this into (1.1), we get

GAs(Rd)(t) =
1 + t2

1− t2
· (1 + dt+ (d− 1)t2) + t · (d+ 2(d− 1)t)

=
1 + t2

1− t
· (1 + (d− 1)t) + dt+ 2(d− 1)t2

=
(1 + t2) · (1 + (d− 1)t) + (1− t) · (−1 + dt+ (d− 1)t2)

1− t
+ 1 + (d− 1)t2

=
2dt

1− t
+ 1 + (d− 1)t2.

This formula can also be obtained by showing that every element of As(Rd) can be uniquely
presented in the form ek0ex. This can be deduced from [9, 11]. Results in [15] can furthermore be
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applied to show that for even d there is an explicit isomorphism As(Rd) ∼= Z2 ×
Z2×Z2

Dd which can

be used to show that GAs(Rd)(t) =
d
2

(
1+t
1−t

)2
+
(
d
2 − 1

)
(t2 − 1), in that case.

Second, take G = Sd, C = Td. To improve readability, we will use the notation

Gd = GSd,Td
, G̃d = GAs(Td)

for the growth series considered, which will be referred to as the small and the big series respectively.
We will need the following formula for the small series:

Proposition 1.4. One has

(1.2) Gd(t) =
d−1∏
k=1

(1 + kt).

This formula admits many generalisations, and can be deduced from the classical work on fi-
nite unitary reflection groups, see [20]. We will present here an elementary inductive proof for
completeness.

Proof. Since in our case all generators are involutive, in the formula

GG,C(t) =
∑
g∈G

tlC(g)

one can take as lC(g) is the minimal number of generators from C needed to write g as a product.
The shortest expressions of a permutation in terms of transpositions correspond to cycle decompo-
sitions. Now, the d+1st element can be inserted into a permutation σ ∈ Sd either as a fixed point,
which preserves the length of the permutation (in terms of transpositions), or after any of the d
elements in the cycle decomposition of σ, which increases the length of the permutation by 1 and
thus adds a factor t. Hence the recursion relation

(1.3) Gd+1(t) = (1 + dt) · Gd(t).

Together with G1(t) = 1, it yields (1.2). □

Inserting this formula into (1.1), one gets

Corollary 1.5. For any integer d ⩾ 2, one has

G̃d(t) =
d−1∏
k=2

(1 + kt) · 1 + t2

1− t
+ t ·

d−1∏
k=1

(1 + kt) ·

(
d−1∑
k=1

k

1 + kt

)
.

For small values of d, this becomes

G̃2(t) =
1 + t

1− t
,

G̃3(t) =
1 + t

1− t
· (−2t2 + 4t+ 1),

G̃4(t) =
1 + t

1− t
· (−12t3 + 13t2 + 10t+ 1),

which for d > 2 differs significantly from the free abelian case (0.2).

To see how the big series G̃d changes with d, we establish a recursive formula, very much resem-
bling the formula (1.3) for the small series:

Corollary 1.6. For any integer d ⩾ 2, one has

(1.4) G̃d+1(t) = (1 + dt) · G̃d(t) + dt · Gd(t).
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Proof. Deriving the recursive formula (1.3) for Gd, one gets

d

dt
Gd+1(t) = (1 + dt) · d

dt
Gd(t) + d · Gd(t).

Thus

G̃d+1(t) = t · d
dt
Gd+1(t) +

1 + t2

1− t2
· Gd+1(t)

= t ·
(
(1 + dt) · d

dt
Gd(t) + d · Gd(t)

)
+

1 + t2

1− t2
· (1 + dt) · Gd(t)

= (1 + dt) ·
(
t · d

dt
Gd(t) +

1 + t2

1− t2
· Gd(t)

)
+ dt · Gd(t)

= (1 + dt) · G̃d(t) + dt · Gd(t). □

Proof of Theorem 1.3. As was shown in [15], the assignment

As(C)→ G× Z,(1.5)

ex 7→ (x, 1)

uniquely extends to an injective group morphism, whose image is

G ×
Z2

Z = { (g,m) ∈ G× Z : lC(g) ≡ m (mod 2) }.

Identifying elements of As(C) with their images in G × Z, one can interpret the desired growth
series as follows:

(1.6) GAs(C)(t) =
∑

(g,m)∈G×
Z2

Z

tl(g,m),

where l(g,m) denotes the length with respect to the generators ex, x ∈ C. Let us show that this
length reduces to the following elementary formula:

l(g,m) = max(lC(g), |m|).

Indeed, to construct (g,m) from the generators (x, 1), x ∈ C, one needs on the one hand at least
lC(g) of them (to obtain g as the first factor), and on the other hand at least |m| of them (to obtain
m as the second factor). So, l(g,m) ⩾ max(lC(g), |m|). To prove the ⩽ inequality, let g = c1 · · · ci
be a minimal length representation of g with respect to the generating set C. In the product
e±1
c1 · · · e

±1
ci , one can choose the signs ±1 to get as total degree any integer between −i and i having

the same parity as i. If lC(g) ⩾ |m|, this yields a representation of (g,m) of length lC(g). In the
opposite case lC(g) ⩽ |m|, to get a representation of (g,m) of length |m|, all signs ±1 should be the
same as the sign of m, and several copies of the element e±2

c1 (contributing only to the second factor

of G× Z since c±2
1 = 1 in G) should be added. Let us now split (1.6) into two parts, according to
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which component yields the above max. We will abbreviate lC(g) as l(g) here.

GAs(C)(t) =
∑
g∈G

∑
m∈Z,

l(g)⩾|m|,
m−l(g) even

tl(g) +
∑
g∈G

∑
m∈Z,

l(g)<|m|,
m−l(g) even

t|m|

=
∑
g∈G

(l(g) + 1)tl(g) +
∑
g∈G

∑
m∈Z,

|m|−l(g)>0,
|m|−l(g) even

t|m|−l(g)tl(g)

=
∑
g∈G

l(g)tl(g) +
∑
g∈G

tl(g) +
∑
g∈G

∑
i∈N

2t2itl(g)

= t · d
dt
GG,C(t) +

∑
g∈G

(1 +
∑
i∈N

2t2i)tl(g)

= t · d
dt
GG,C(t) +

1 + t2

1− t2
· GG,C(t). □

Remark 1.7. Note that for a finite group G, in the analysis detailed in the proof, only the case
l(g) ⩽ |m| is possible for |m| large enough. Thus

GAs(C)(t) =
∑
m∈Z

#G

2
t|m| + some polynomial

=
∑
m∈N

2
#G

2
tm + some polynomial

=
#G

1− t
+ some polynomial.

Thus all coefficients in the series, except for a finite number, equal #G.

2. How structure groups of permutation- and dihedral-type solutions grow

In this section, we explain how to compute the growth series of the structure group of the entire
permutation solution Sd and dihedral solution Dd. Again, we will work in a more general context,
that of a finite C̄-group G with commutator length 1. That is, each element in the commutator
subgroup [G,G] is a simple commutator [a, b] = aba−1b−1 = (a ▷ b)b−1. Typical examples are
symmetric groups (see [18, Theorem 1]) and odd-order dihedral groups (for which the commutator
subgroup is the subgroup of all rotations, which are always products of two reflections).

We will need the following notations. Given a group G, denote by c the number of its conjugacy
classes, and by C = {Ci : 0 ⩽ i ⩽ c − 1} the set of its conjugacy classes. We impose C0 = {1}.
Given a sequence of conjugacy classes Cij (1 ⩽ j ⩽ n), we define

n∏
j=1

Cij =
{
g1g2 . . . gj : gj ∈ Cij (1 ⩽ j ⩽ n)

}
.

An empty product, meaning that n = 0, is furthermore to be understood as {1}. As each fac-
tor is invariant under conjugation, this product is independent of the specific order of factors.
Furthermore, for some conjugacy class C = Ci and an integer k, we define

Ck =

{∏k
j=1 C k ⩾ 0∏−k
j=1 C−1 k < 0,

where C−1 = {g−1 : g ∈ C}.
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Definition 2.1. The defect measure of a finite group G with a fixed order on its conjugacy classes
is the map

δG : Zc−1 −→ Z⩾0,

k̄ 7−→ #[G,G]−#

(
c−1∏
i=1

Ckii

)
.

Note that C0 is excluded from the above product. Furthermore, the defect series of G is defined as

∆G(t) =
∑

k̄∈Zc−1

δG(k̄) · t|k̄|,

where |k̄| =
∑c−1

i=1 |ki|.

Contrary to defect measures, the defect series is independent of the order on conjugacy classes of
G. We remark here that δG takes only non-negative values as under the canonical homomorphism
Ab : G ↠ Gab, any product of conjugacy classes in G is mapped to a singleton; therefore, the size
of such a product cannot exceed #[G,G].

We now state the main result of this section:

Theorem 2.2. Let G be a finite C̄-group with commutator length 1, and with c conjugacy classes.
Then the growth series of the structure group of (G, r▷) can be computed as follows:

(2.1) GAs(G)(t) = #[G,G] ·
(
1 + t

1− t

)c

− (1 + t)2 ·∆G(t).

In particular, the computation of the growth series of As(G) boils down to the computation of
the defect series of G.

Proof. Since the element e1 generates a central subgroup of As(G) that is isomorphic to Z, we can
factor it out, and get

GAs(G)(t) = G(Z,1)(t) · GAs(G0)(t) =
1 + t

1− t
· GAs(G0)(t),

where G0 = G \ {1}. We will thus concentrate on G0 in what follows.
As was shown in [15], the assignment

As(G0)→ G× Zc−1,(2.2)

ex 7→ (x, 1i),

where 1i generates the component in Zc−1 corresponding to the conjugacy class Ci of x, uniquely
extends to an injective group morphism. Its image is the pullback of the homomorphisms

Zc−1 −→ Gab = Zp1 × · · · × Zpc−1

Ab←− G0.

Here pi is the power in the unique power relation ap = 1 with a ∈ Ci if there is one, and pi = +∞
otherwise. The map on the left is the canonical projection for each of the c− 1 factors. It will be
convenient for us to identify As(G0) with its image in G× Zc−1.

Now, the abelianisation map Ab: As(G0) ↠ Zc−1 is surjective. Its kernel is

(2.3) Ab−1(0) = [G,G]× {0} ⊂ G× Zc−1.

We need to compute

GAs(G0)(t) =
∑

(g,k̄)∈As(G0)

tl(g,k̄),

where l(g, k̄) denotes the length with respect to the generators ex, x ∈ G0. Let us show that this
length is never too far from |k̄|:

l(g, k̄) ∈ {|k̄|, |k̄|+ 2}.
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Since each ex contributes at most 1 to exactly one factor in Zc−1, at least |k̄| such generators are
needed to produce (g, k̄), hence l(g, k̄) ⩾ |k̄|. For the same reason, l(g, k̄) has the same parity as
|k̄|. If l(g, k̄) turns out to exceed |k̄|, then pick any h ∈ G with l(h, k̄) = |k̄|. As

(gh−1, 0) = (g, k̄)(h, k̄)−1 ∈ Ab−1(0) = [G,G]× {0},

we have gh−1 ∈ [G,G]. Our assumption on the commutator length implies that gh−1 can be
presented as [a, b] = (a▷b)b−1. Since a▷b and b lie in the same conjugacy class, say Cj (with j ̸= 0),
one can write

(gh−1, 0) = (a ▷ b, 1j)(b, 1j)
−1 = ea▷be

−1
b .

Therefore,

(g, k̄) = (gh−1, 0)(h, k̄) = (a ▷ b, 1j)(b, 1j)
−1(h, k̄)

can be written as a product of |k̄| + 2 generators and their inverses. Together with the parity
remark above, this yields l(g, k̄) = |k̄|+ 2, as announced.

Now, the above analysis shows that the option l(g, k̄) = |k̄| actually means that g is realisable as
a product of |ki| elements from each conjugacy class Ci (if ki > 0) or of inverses thereof (if ki < 0).

This can be translated as g ∈
∏c−1

i=1 C
ki
i . Thus, for a fixed k̄ ∈ Zc−1, the number of elements (g, k̄)

realising this generic option is #
(∏c−1

i=1 C
ki
i

)
. Then the number of elements (g, k̄) realising the

defect option l(g, k̄) = |k̄|+ 2 is

#Ab−1(k̄)−#

(
c−1∏
i=1

Ckii

)
= #[G,G]−#

(
c−1∏
i=1

Ckii

)
= δG(k̄).

Indeed, Eq. (2.3) together with the surjectivity of Ab implies that all fibers of Ab have the same
cardinality, #[G,G].

Summarising, we get

GAs(G0)(t) =
∑

k̄∈Zc−1

(#[G,G]− δG(k̄))t
|k| + δG(k̄)t

|k̄|+2

= #[G,G] ·
∑

k̄∈Zc−1

t|k̄| + (t2 − 1) ·
∑

k̄∈Zc−1

δG(k̄)t
|k̄|

= #[G,G] ·
(
1 + t

1− t

)c−1

+ (t2 − 1)∆G(t).

Multiplying by the missing factor G(Z,1)(t) = 1+t
1−t , one recovers the desired formula for the entire

growth series GAs(G)(t). □

To apply Theorem 2.2 to our favourite groups G = Sd, we need a thorough study of their defects.
First, in this case each conjugacy class C satisfies C−1 = C, hence

(2.4) δSd(k1, k2, . . . , kc−1) = δSd(|k1|, |k2|, . . . , |kc−1|),

i.e. the defect measure is independent of the signs of its arguments. This simplifies the computation
of the defect series:

(2.5) ∆Sd(t) =
∑

k̄∈Zc−1
⩾0

2#{i∈{1,...,c−1}:ki ̸=0} · δSd(k̄)t
|k̄|.

We now demonstrate how to use this to compute GAs(Sd)(t) for d = 3 and d = 4.
First, let us list the conjugacy classes of S3:

i 0 1 2

Ci {1} S3(1 2) S3(1 2 3)
#Ci 1 3 2
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Here c = 3, and [S3, S3] = A3 = C0 ∪ C2 is of size 3. We need to determine all non-zero defects
δS3(k̄) for ki ⩾ 0. To do this, it is essential to understand the products of all pairs of conjugacy
classes, which are necessarily unions of conjugacy classes. We therefore build a multiplication table
whose i, j-entry contains the indices of the conjugacy classes contained in Ci · Cj :

· 0 1 2

0 0 1 2
1 1 0, 2 1
2 2 1 0, 2

From this table, one reads that #
(∏2

i=1 C
ki
i

)
= 3 = #[S3,S3] whenever |k̄| = k1 + k2 ⩾ 2. That

is, the defect measure δS3(k̄) vanishes for such k̄. For the remaining entries, we compute δS3 as
follows:

δS3(0, 0) = 3− 1 = 2,

δS3(1, 0) = 3−#C1 = 3− 3 = 0,

δS3(0, 1) = 3−#C2 = 3− 2 = 1.

Thus

∆S3(t) = 20 · δS3(0, 0)t0+0 + 21 · δS3(1, 0)t1+0 + 21 · δS3(0, 1)t0+1 = 2 + 2t,

and

GAs(S3)(t) = 3 ·
(
1 + t

1− t

)3

− (1 + t)2 · (2 + 2t) = 3 ·
(
1 + t

1− t

)3

− 2 · (1 + t)3

= (1 + t)3 ·
(

3

(1− t)3
− 2

)
.

For d = 4, the c = 5 conjugacy classes are as follows:

i 0 1 2 3 4

Ci {1} S4(1 2) S4(1 2)(3 4) S4(1 2 3) S4(1 2 3 4)
#Ci 1 6 3 8 6

The commutator subgroup [S4, S4] = A4 = C0 ∪ C2 ∪ C3 is of size 12. The multiplication table for
its conjugacy classes is

· 0 1 2 3 4
0 0 1 2 3 4
1 1 0, 2, 3 1, 4 1, 4 2, 3
2 2 1, 4 0, 2 3 1, 4
3 3 1, 4 3 0, 2, 3 1, 4
4 4 2, 3 1, 4 1, 4 0, 2, 3

In this table appears a phenomenon which makes S4 special among symmetric groups. We have
Cm2 = C2 ∪ C0 (of size 4 < 12) for all m ⩾ 2, and Cm2 · C3 = C3 (of size 8 < 12) for all m ⩾ 1.
In particular, the defect series ∆S4 is not a polynomial. Also, C1 · C4 = C2 ∪ C3 is of size 11.
Other multiple products of conjugacy classes yield either C0 ∪ C2 ∪ C3 or C1 ∪ C4, and are of size
12 = #[S4,S4]. We summarise non-trivial defects in the following table:

k̄ δS4(k̄)
(0, 0, 0, 0) 11
(1, 0, 0, 0) 6
(0, 1, 0, 0) 9
(0, 0, 1, 0) 4
(0, 0, 0, 1) 6
(1, 0, 0, 1) 1

(0,m, 0, 0),m ⩾ 2 8
(0,m, 1, 0),m ⩾ 1 4
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Using Eq. (2.5), we can now compute:

∆S4(t) = 11 + 21 · (6 + 9 + 4 + 6)t+ 22 · t2 + (21 · 8 + 22 · 4) ·
∞∑

m=2

tm = 11 + 50t+ 4t2 +
32t2

1− t
,

hence

GAs(S4)(t) = 12 ·
(
1 + t

1− t

)5

− (1 + t)2 ·
(
11 + 50t+ 4t2 +

32t2

1− t

)
.

Note that for d ⩾ 3 with d ̸= 4, the simplicity of Ad = [Sd, Sd] guarantees that for any nontrivial
conjugacy class {1} ̸= C of Sd, we have C2m = Ad for m large enough, hence δSd(k̄) = 0 for
sufficiently large |k̄|. In particular, ∆Sd(t) is a polynomial that can be computed explicitly.

The table below contains the numerators of GAs(Sd)(t) (the denominators being (1−t)c), obtained
using a computer program2:

d numerator of GAs(Sd)(t)

5 4t12 + 92t11 − 46t10 − 1455t9 + 3505t8 − 980t7 − 4760t6 + 7150t5 + 2050t4 − 1200t3

+3086t2 + 233t+ 1
6 8t17 + 640t16 + 1836t15 − 42306t14 + 172997t13 − 294051t12 + 93174t11 + 467324t10

−728893t9 + 339031t8 + 530288t7 − 368178t6 + 339579t5 + 214699t4 − 41778t3

+51480t2 + 1429t+ 1
7 4t22 + 1500t21 − 9052t20 + 59768t19 − 604186t18 + 3616477t17 − 12219475t16 + 23927860t15

−22726364t14 − 7980432t13 + 55843840t12 − 65892060t11 + 35195992t10 + 44917674t9

−38168278t8 + 47903548t7 + 11652920t6 − 3556516t5 + 11546372t4 − 1720204t3

+775906t2 + 10065t+ 1
8 −4t30 − 10144t29 + 134812t28 − 972046t27 + 5044568t26 − 14288042t25 − 34866279t24

+606830872t23 − 3360342688t22 + 11590895976t21 − 27738090666t20 + 46699079226t19

−50843972868t18 + 21390854702t17 + 43714754431t16 − 99390934656t15 + 121989261436t14

−58116641248t13 + 8695013472t12 + 67561029126t11 − 46119135216t10 + 47606045586t9

−7722313273t8 + 5034722152t7 + 3123671976t6 − 634489832t5 + 555116750t4 − 53617970t3

+14307868t2 + 80618t+ 1

Let us next turn to the dihedral group G = Dd for odd d. It is of size 2d. Its conjugacy classes
are C0 = {1}, C1 = Rd (the set of d reflections), and Ci = {ρi−1, ρ1−i} for i = 2, . . . , d+1

2 . Here ρ is

the rotation by the angle 2π
d . This yields d+3

2 classes in total. Omitting the reflection class C1, we
get the subgroup Rotd of all the d rotation in Dd, which is isomorphic to the cyclic group Zd. It
turns out to be the derived subgroup of Dd: [Dd,Dd] = Rotd. Relation C−1 = C for all conjugacy
classes allows us to compute the defect measures for positive entries only, and to use the relations
(2.4) and (2.5).

We are now ready to compute GAs(D5)(t). (The case d = 3 is of no interest since D3 = S3.) The
multiplication table for the conjugacy classes of D5 looks as follows:

· 0 1 2 3

0 0 1 2 3
1 1 0, 2, 3 1 1
2 2 1 0, 3 2, 3
3 3 1 2, 3 0, 2

2A link to the GAP-file is available under https://sites.google.com/view/carstendietzel/ in the respective
entry in the list of publications
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We thus have #
(∏3

i=1 C
ki
i

)
= 5 = #[D5,D5] whenever k1 ⩾ 1, or k2 ⩾ 4, or k3 ⩾ 4, or k2 + k3 ⩾ 3

and k2k3 ̸= 0. For the remaining entries, we compute δS3 as follows:

δD5(0, 0, 0) = 5− 1 = 4,

δD5(0, 1, 0) = 5−#C2 = 5− 2 = 3,

δD5(0, 0, 1) = 5−#C3 = 5− 2 = 3,

δD5(0, 1, 1) = 5−#(C2 × C3) = 5− 4 = 1,

δD5(0, 2, 0) = δD5(0, 0, 2) = 5− 3 = 2,

δD5(0, 3, 0) = δD5(0, 0, 3) = 5− 4 = 1.

Thus

∆D5(t) = 4 + 21 · (3 + 3)t+ 22 · t2 + 21 · (2 + 2)t2 + 21 · (1 + 1)t3 = 4 + 12t+ 12t2 + 4t3,

and

GAs(D5)(t) = 5 ·
(
1 + t

1− t

)4

− (1 + t)2 ·
(
4 + 12t+ 12t2 + 4t3

)
= 5 ·

(
1 + t

1− t

)4

− 4(1 + t)5.

For d = 7, we get

GAs(D7)(t) = 7 ·
(
1 + t

1− t

)5

− 6(1 + t)7 + 6t3(1 + t)3.

For d = 9

∆D9(t) = 8(1 + 7t+ 21t2 + 35t3)− 10t3 + higher terms.

Our last observation is that the defect series ∆Dd
(t) does not need to be a polynomial in general.

For instance for d = 9, the classes C0 = {1} and C4 = {ρ3, ρ−3} generate a subgroup of 3 rotations
inside D9 (a copy of Z3 inside Rot9 ∼= Z9), hence δD9(0, 0, 0, k, 0) = 9− 3 = 6 ̸= 0 for all k ⩾ 2.

3. How structure monoids of transposition solutions grow

Let us now turn to the growth series of the structure monoid As+(Td) of the transposition
solution. The basic ingredient of our computations in the group case was the injection (1.5) of
As(Td) into a more accessible group, the direct product Sd×Z. The corresponding map is no
longer injective for the monoid. Indeed, the elements e2x, x ∈ Td, are all frozen in the monoid
As+(Td) (since no non-trivial braiding moves apply to them) and thus pairwise distinct, whereas
the map (1.5) sends them all to (Id, 2) ∈ Sd×Z. However, the situation changes in the presence of
other generators. Concretely, for all x, y ∈ Td we have

(3.1) e2xey = exex▷yex = ex▷(x▷y)exex = ex2▷ye
2
x = eye

2
x,

hence the squares of all generators are central in As+(Td). On the other hand,

(3.2) eye
2
x = ey▷xeyex = ey▷xey▷xey = e2y▷xey.

Since Td is a single conjugacy class in Sd, relations (3.1)-(3.2) imply that the squares e2x are all
equal in the group As(Td), whereas in the monoid As+(Td) they are equal only in the presence of
appropriate generators. To make this statement precise, we need the following definition.

Definition 3.1. Let w be a word in the letters ex, x ∈ Td. The (undirected) graph Γw of w is
constructed on the vertices 1, 2, . . . , d by connecting i and j whenever the letter e(i,j) appears in w
at least once. Here, for each transposition we allow two notations, (i, j) and (j, i). The connected
components of Γw yield a partition of the set {1, 2, . . . , d}, called the partition of w. A component
is considered to be trivial if it is a singleton.

Lemma 3.2. Two words in the letters ex, x ∈ Td, representing the same element of the monoid
As+(Td), have the same partition.
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Proof. Indeed, the defining relations e(i,j)e(k,l) = e(k,l)e(i,j) and e(i,j)e(k,j) = e(k,i)e(i,j) do not change
the connected components of the graph from the above definition. Here the indices i, j, k, l are all
distinct. □

Thus, one can talk about the partition p(a) ∈ Pd (the set of all partitions of the set {1, 2, . . . , d})
of an element a ∈ As+(Td). This yields a map

p : As+(Td)→ Pd.
Recall that the join π∨ρ of two partitions π and ρ is obtained by gluing together all intersecting

parts from π and ρ. Note that π ∨ ρ is the finest partition that is coarser than π and ρ, therefore
the join describes the semilattice structure of Pd with respect to the refinement relation. It is called
the partition semilattice of rank d.

Proposition 3.3. The monoid As+(Td) splits as a disjoint union of its subsemigroups p−1(π),
π ∈ Pd. Moreover, for any elements a ∈ p−1(π) and b ∈ p−1(ρ), their product ab lies in p−1(π∨ρ).

Proof. By definition, to construct the graph of ab on the vertices 1, 2, . . . , d, one takes as edges
precisely the edges corresponding to the letters e(i,j) from a word w representing a (hence present
in the graph of w), and the letters e(i,j) from a word v representing b (hence present in the graph
of v). Hence the connected components of the word wv representing ab are obtained by gluing
together all intersecting components of the graphs of w and v. □

The monoid As+(Td) thus splits as a semilattice of semigroups p−1(π). To understand the latter,
it suffices to study only the semigroups of the following particular type.

Definition 3.4. An element a ∈ As+(Td) is called full if the induced partition p(a) has only
one part, the whole set {1, 2, . . . , d}. The subsemigroup of elements of As+(Td) is called the full
transposition semigroup on d elements, denoted by FTSd.

Example 3.5. In As+(T5), consider the elements

a = e(1,2)e(2,3)e(4,5)e(1,2) and b = e(2,3)e(1,5)e(2,5)e(3,4)e(1,2).

Their respective graphs are

1

2

3 4

5
and

1

2

3 4

5

Their respective partitions are p(a) = {{1, 2, 3}, {4, 5}} and p(b) = {{1, 2, 3, 4, 5}}. So b is full
whereas a is not.

Lemma 3.6. Let π ∈ Pd be a partition with parts of size i1, . . . , ik. Then the semigroup p−1(π) is
isomorphic to the direct product of the following full transposition semigroups:

p−1(π) ∼= FTSi1 × · · · × FTSik .

Note that a part of size 1 gives rise to a trivial factor isomorphic to FTS1 = {1}.

Proof. The defining relations of As+(Td) guarantee that two elements commute if their non-trivial
components are mutually disjoint. This yields a surjection FTSi1 × · · · × FTSik ↠ p−1(π). It is
injective since the defining relations of As+(Td) applicable to a word representing an element from
p−1(π) are either commutation relations for letters coming from different components FTSij , or
commutation or commutation-conjugation relations between letters from the same component of
size i, which are valid in FTSi. □

For small values of d, we have:

(1) As+(T1) = FTS1 = {1}, the trivial monoid. Note that T1 = {}.
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(2) As+(T2) = {1} ⊔ FTS2, where FTS2 ∼= N is generated by e(1,2).

(3) As+(T3) contains a copy of {1}; three copies of FTS2, generated by the three elements e(i,j),
respectively, and one copy of FTS3. The product of two elements from different copies of
FTS2 lands in FTS3.

The computation of the growth series of As+(Td) is thus reduced to that for all full components.
The nice thing about the semigroup FTSd is that it does inject into Sd×N, as suggested by the
computations at the beginning of this section. This opens the way to the techniques used in Section
1.

Theorem 3.7. For d ⩾ 2, the assignment

As+(Td)→ Sd×N,
ex 7→ (x, 1)

uniquely extends to a semigroup morphism. Its restriction to FTSd, denoted by

ιd : FTSd → Sd×N
is injective, and its image is

Im(ιd) = { (g, 2(d− 1)− l(g) + 2k) ∈ Sd×N : k ∈ Z, k ⩾ 0 }.
As usual, l(g) is the minimal number of transpositions from Td whose product yields g.

In the first non-trivial case d = 3, the theorem identifies FTS3 with the subsemigroup of S3 ×
Z2

N

obtained by discarding the elements (Id, 2) and ((i, j), 1).

Proof. The computation

(x ▷ y, 1)(x, 1) = ((x ▷ y) · x, 2) = (xy, 2) = (x, 1)(y, 1)

guarantees that we indeed have a well-defined semigroup morphism.
Our proof of injectivity is based on the following classical properties of the symmetric group

Sd [3, Proposition 1.6.1]:

(1) The minimal number l(g) of transpositions (i, j) ∈ Td needed to write a permutation g ∈ Sd
equals d− c(g), where c(g) is the number of cycles in g.

(2) Two minimal length representations of a g ∈ Sd can be related by a finite series of rewriting
rules

(3.3) (i, j) · (k, l) ←→ ((i, j) ▷ (k, l)) · (i, j)
(going in any direction).

(3) Any representation of a g ∈ Sd can be turned into one of minimal length using the rewriting
rules (3.3) and

(3.4) (i, j)2 −→ 1.

Now, take a, b ∈ FTSd represented by words w and v (in the generators e(i,j)) respectively, and
assume that ιd(a) = ιd(b) = (g,m). Replacing each e(i,j) with (i, j), one gets two representations
of the same permutation g ∈ Sd. Rewrite them to get minimal length representations, as explained
in item 3 above. These rewriting procedures can be mimicked for the words w and v. Indeed, the
rewriting steps (3.3) become e(i,j)e(k,l) ↔ e(i,j)▷(k,l)e(i,j), while (3.4) can be replaced with pushing

the central element e2(i,j) to the left of the word. For the two minimal length representations of g

obtained this way, mimic the rewriting procedure from item 2 in the same manner. This yields two
words w′ = e2(i1,j1) · · · e

2
(ik,jk)

u and v′ = e2(s1,t1) · · · e
2
(sk,tk)

u in the generators e(i,j) representing a and

b respectively. Here the common subword u lifts one of the minimal length representatives of g.
Note that the two words w′ and v′ have the same number k of square factors e2(•,•) since they have

the same length m. Now, choose arbitrary representatives r1, . . . , rq of the parts of the partition
π of u. Eq. (3.1) allows one to move any factor e2(i,j) in any of the two words towards any letter

e(s,t) in u; then, with Eq. (3.2) one can make the transposition (s, t) act on (i, j) by conjugation;
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finally, the modified square can be returned to its initial position using (3.1) again. This sequence
of operations will be called a contamination of e2(i,j) in this proof. Repeating contamination for all

the squares e2(i,j) in the subwords of w′ and v′, one can replace i and j with our selected indices

r1, . . . , rq, whenever i and j come from distinct parts of π. Then, for the squares e2(i,j) with i and

j from the same part, i can be first contaminated into the index rx from the same part, then, if
there are at least two parts, to another ry using the remaining squares e2(s,t) (recall that a and b are

full), after which j can be contaminated into rx. Thus all the indices in the squares can be forced
to be of the form rx. To relate the words w′′ and v′′ obtained this way, one can use

Lemma 3.8. Consider a full element a ∈ FTSd which can be represented as a product of squares
of generators, a = e2(i1,j1) · · · e

2
(ik,jk)

. Then it can be rewritten in the following canonical way:

a = e2(1,2)e
2
(2,3) · · · e

2
(d−2,d−1)e

2p
(d−1,d),

for p = k − (d− 2).

Proof. We will use induction on k. An element e2(i1,j1) can be full only if d = 2, in which case the

statement is tautological.
Next, assume the statement established for a certain k, and consider a full element

a = e2(i1,j1) · · · e
2
(ik,jk)

e2(ik+1,jk+1)
.

Case 1. The word remains full after omitting some square, say e2(ik+1,jk+1)
(commuting squares

can always be rearranged in this way). The induction hypothesis then applies to the prefix
e2(i1,j1) · · · e

2
(ik,jk)

, allowing us to rewrite a as

a = e2(1,2)e
2
(2,3) · · · e

2
(d−2,d−1)e

2p
(d−1,d)e

2
(ik+1,jk+1)

.

The last square e2(ik+1,jk+1)
can then be contaminated into e2(d−1,d).

Case 2. If on the contrary the removal of any edge disconnects the graph of a, then this graph
is necessarily a tree. Pick any square e2(c,d) where one of the indices is d. Using contamination by

e(c,d), replace all other occurrences of the index d with c. Finally, contaminate e2(c,d) into e2(d−1,d)

(recall that the graph is connected, since a is full). Then one can rewrite a = be2(d−1,d), where

b ∈ FTSd−1 is a full product of d− 2 squares on d− 1 letters. The induction hypothesis allows us
to rewrite it as b = e2(1,2)e

2
(2,3) · · · e

2
(d−2,d−1), and we are done. □

The one-partition case is not covered by the above arguments. In this situation, all squares can
be contaminated into the same square, say e2(1,2), and the numbers of such squares in the two words

are equal because of the second component of the map ιd.
To compute the image of ιd, we need to find the minimal length lf(g) of a full representation

of a permutation g ∈ Sd in terms of the transpositions (i, j) ∈ Td. Here full representations are
defined in the same way as the full elements of As+(Td). Indeed, since in the image ιd(a) = (g,m)
the permutation g and the integer m are of the same parity, and since m can be increased by 2 by
multiplying a by e2(1,2), we have

Im(ιd) = { (g, lf(g) + 2k) ∈ Sd×N : k ∈ Z, k ⩾ 0 }.
Starting with a representation of g as a product of l(g) transpositions, whose graph has c(g)

connected components, one can make it full by adding c(g)− 1 squares (i, j)2. Thus,

lf(g) ⩽ l(g) + 2(c(g)− 1).

On the other hand, any full representation of g ∈ Sd yields a full element a ∈ FTSd with
ιd(a) = (g,m). As explained before Lemma 3.8, a can be rewritten as e2(i1,j1) · · · e

2
(ik,jk)

u, where u

lifts a minimal length representation of g. Then u is of length l(g), and its graph has c(g) connected
components. To connect the graph, one needs at least c(g)− 1 edges, hence k ⩾ c(g)− 1. Thus,

lf(g) ⩾ l(g) + 2(c(g)− 1).
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Hence the announced equality

lf(g) = l(g) + 2(c(g)− 1) = l(g) + 2(d− l(g)− 1) = 2(d− 1)− l(g). □

Note that the proof actually works for any group with a C̄-presentation of class 2 satisfying the
rewriting conditions 2-3.

The theorem gives for free the following useful property:

Corollary 3.9. The tautological map

FTSd → As(Td),

ea1 . . . eak 7→ ea1 . . . eak

is an injective morphism of semigroups.

Proof. Realising FTSd inside Sd×N using the map ιd, and As(Td) inside Sd×Z using (1.5), one
interprets the map from the statement as the standard inclusion Sd×N ↪→ Sd×Z. □

We have prepared all ingredients needed to compute the growth series of the structure monoids
As+(Td), which we organise into a single two-variable series.

Theorem 3.10. The growth series G̃+d (t) of As
+(Td) can be computed by the following formula:∑

d⩾0

1

d!
G̃+d (t)x

d = exp

(
(1− tx)−t − 1− t4x

t2(1− t2)

)
.

Here we use the exponential exp defined for formal series f =
∑∞

k,l=0 rk,lt
kxl ∈ Q[[t, x]] with

r0,0 = 0 by

exp(f) =
∞∑
n=0

fn

n!
.

Note that, as usual, exp(f + g) = exp(f) exp(g).
Also, the expression (1− tx)−t should be understood as the formal binomial series

(1 + y)α =
∞∑
n=0

(
α

n

)
yn = 1 + αy +

α(α− 1)

2!
y2 +

α(α− 1)(α− 2)

3!
y3 + · · · .

with α = −t and y = −tx.

Proof. Let us first compute the restricted growth series G̃+,f
d (t) =

∑
g∈FTSd

tl(g) for d ⩾ 2. Theorem

3.7 identifies the elements of FTSd with the couples (g, 2(d− 1)− l(g) + 2k) ∈ Sd×N, with k ∈ Z,
k ⩾ 0. The argument at the end of the proof of that theorem guarantees that the length of such
an element, in terms of the generators e(i,j), is simply the second component 2(d− 1)− l(g) + 2k.
Thus

G̃+,f
d (t) =

∑
g∈Sd

∑
k⩾0

t2(d−1)−l(g)+2k =
t2(d−1)

1− t2

∑
g∈Sd

t−l(g)

=
t2(d−1)

1− t2
Gd(t−1) =

t2(d−1)

1− t2

d−1∏
k=1

(1 + kt−1)

=
td−2

1− t2

d−1∏
k=0

(t+ k) =
(−t)d

t2(1− t2)

d−1∏
k=0

(−t− k)

= d!
(−t)d

t2(1− t2)

(
−t
d

)
.
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We used the formula (1.2) for the growth series Gd = GSd,Td
. For d = 1, the above formula fails.

For future computations, we need its corrected version:

G̃+,f
1 (t) = 1 = 1!

(−t)1

t2(1− t2)

(
−t
1

)
· (1− t2).

So, the correction factor is (1− t2).

To compute the growth series G̃+d (t) of the entire monoid As+(Td), according to Proposition 3.3,
one needs to sum over all partitions π ∈ Pd of the set {1, 2, . . . , d} the restricted growth series of
the subsemigroups p−1(π). According to Lemma 3.6, for a partition with parts of size i1, . . . , ik,
the latter restricted growth series is the product of the restricted growth series of the corresponding
full transposition semigroups:

Gp−1(π)(t) =
∑

g∈p−1(π)

tl(g) = G̃+,f
i1

(t) · · · G̃+,f
ik

(t).

In particular, it depends only on the part sizes i1, . . . , ik of π. Now, take a partition

λ = (n1 ⩽ n2 ⩽ . . . ⩽ nk) ⊢ d

of an integer d. Denote by µi(λ) the number of its parts of size i. One has
∑

i µi(λ) = k, and∑
i iµi(λ) =

∑
j nj = d. In our computations, we will need the number of set partitions π ∈ Pd

whose part sizes form the integer partition λ. It is given by the formula

(
d

n1, . . . , nk

)∏
i

1

µi(λ)!
.

The preceding argument then yields:

G̃+d (t) =
∑

λ=(n1,...,nk)⊢d

(
d

n1, . . . , nk

)∏
i

1

µi(λ)!

∏
i

(
G̃+,f
i (t)

)µi(λ)

=
∑

λ=(n1,...,nk)⊢d

d!∏
i(i!)

µi(λ)

∏
i

1

µi(λ)!

(
i!

(−t)i

t2(1− t2)

(
−t
i

))µi(λ)

· (1− t2)µ1(λ)

= d!
∑

λ=(n1,...,nk)⊢d

∏
i

1

µi(λ)!

(
(−t)i

t2(1− t2)

(
−t
i

))µi(λ)

· (1− t2)µ1(λ).

The result is the factorial d! times a sum of products of terms, each of which depends only on the

integers i and µi(λ), in the exponential-looking way. G̃+d (t) is expressed as a sum over partitions of
d in a way that is similar to the coefficients in certain exponential generating series. A comparison
with the exponential formula from enumerative combinatorics [22, Theorem 3.11] suggests using
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the exponential generating series for the sequence of formal series G̃+d :∑
d⩾0

1

d!
G̃+d (t)x

d =
∑
d⩾0

∑
λ=(n1,...,nk)⊢d

∏
i

1

µi(λ)!

(
(−t)i

t2(1− t2)

(
−t
i

))µi(λ)

· (1− t2)µ1(λ) · x
∑

i iµi(λ)

=
∑
d⩾0

∑
λ=(n1,...,nk)⊢d

∏
i

1

µi(λ)!

(
(−tx)i

t2(1− t2)

(
−t
i

))µi(λ)

· (1− t2)µ1(λ)

=
∑

m1,m2,...∈N0

∏
i

1

mi!

(
(−tx)i

t2(1− t2)

(
−t
i

))mi

· (1− t2)m1

=
∏
i⩾2

∑
mi∈N0

1

mi!

(
(−tx)i

t2(1− t2)

(
−t
i

))mi

·
∑

m1∈N0

1

m1!
xm1

=
∏
i⩾2

exp

(
(−tx)i

t2(1− t2)

(
−t
i

))
· exp(x)

= exp

(
x+

∑
i⩾2

(−tx)i

t2(1− t2)

(
−t
i

))

= exp

(
x+

1

t2(1− t2)

(∑
i⩾0

(−tx)i
(
−t
i

)
− 1− t2x

))

= exp

(
1

t2(1− t2)

(
(1− tx)−t − 1− t4x

))
,

as announced. □

Let us resume our computations for small values of d. For the full part, the formula from the
proof yields

G̃+,f
2 (t) = 2!

(−t)2

t2(1− t2)

(−t)(−t− 1)

2!
=

t

1− t
,

hence

G̃+2 (t) = 1 + G̃+,f
2 (t) =

1

1− t
= GN0(t),

as expected. Next,

G̃+,f
3 (t) = 3!

(−t)3

t2(1− t2)

(−t)(−t− 1)(−t− 2)

3!
=

t2(t+ 2)

1− t
= 2t2 + 3

∑
n⩾3

tn.

Note that, due to the semigroup injection from Theorem 3.7, we always have

G̃+,f
d (t) =

d!

2
· 1

1− t
+ a polynomial of degree (2d− 4) .

Next, from our structural analysis of As+(T3) it follows that

G̃+3 (t) = 1 + 3G̃+,f
2 (t) + G̃+,f

3 (t) = 1 + 3
t

1− t
+

t2(t+ 2)

1− t
=

(t+ 1)(t2 + t+ 1)

1− t

= 1 + 3t+ 5t2 + 6
∑
n⩾3

tn.

Similarly,

G̃+,f
4 (t) =

t3(t+ 2)(t+ 3)

1− t
= 6t3 + 11t4 + 12

∑
n⩾5

tn,
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and

G̃+4 (t) = 1 + 6G̃+,f
2 (t) + 4G̃+,f

3 (t) + G̃+,f
4 (t) + 3G̃+,f

2 (t)2

= 1 + 6
t

1− t
+ 4

t2(t+ 2)

1− t
+

t3(t+ 2)(t+ 3)

1− t
+ 3

(
t

1− t

)2

.

Observe that, because of the last summand, this series does not longer stabilise for the degree n
large enough.

4. Normal forms in the structure monoid of the infinite reflection solution

In this section, we prepare the soil for investigating the growth of the structure monoids of
reflection solutions (Rd, r▷). An important ingredient for this will be a normal form in these
monoids. This form will be convenient to establish first in a common lift of these solutions (for all
d), which we will now describe.

Definition 4.1. The infinite reflection solution, denoted by R∞, is the set Z endowed with the
following map on Z× Z:
(4.1) r(x, y) = (x ▷ y = −y + 2x, x).

One easily checks that it is an invertible non-degenerate YBE solution. Readers familiar with
quandles will readily recognise the infinite dihedral quandle.

Taking a quotient modulo d, one obtains a solution isomorphic to (Rd, r▷). Indeed, one just
needs to order cyclically the vertices of a regular d-gon, and identify the reflection with respect to
the vertex i with i ∈ Zd.

To compare words in As+(R∞), we will need several natural invariants.

Lemma 4.2. The assignment

l0 × l1 : As+(R∞)→ N0 × N0,

ea 7→

{
(1, 0) if a is even,

(0, 1) if a is odd

uniquely extends to a well-defined monoid morphism.

The components l0 and l1 simply count the generators with even and odd indices respectively.
More conceptually, l0 × l1 is the monoid surjection As+(R∞) ↠ As+(R2) ∼= N0 × N0 induced by
the above mentioned solution surjection R∞ ↠ R2.

Proof. The compatibility with the defining relations in As+(R∞) follows from the fact that y and
−y + 2x are always of the same parity. □

Definition 4.3. In what follows, an application of a defining relation in As+(R∞) or its inverse in
a rewriting sequence will be called a braiding move.

Definition 4.4. The numbers l0(w) and l1(w) are called the even and the odd length of w ∈
As+(R∞) respectively.

Their sum is the familiar length l(w) with respect to the generators ea.

Lemma 4.5. The map

ω : As+(R∞)→ Z,
ea1ea2 · · · ean 7→ a1 − a2 + · · ·+ (−1)n+1an,

1 7→ 0

is well defined.

Proof. This definition is compatible with the braiding moves, since

x− y = (−y + 2x)− x. □
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Definition 4.6. The number ω(w) is called the weight of w ∈ As+(R∞).

This weight function is extended to general Alexander quandles in [10]. Note that ω is not a mor-
phism of monoids, but rather a monoid 1-cocycle. The weight function is useful for computations
in As+(R∞):

Lemma 4.7. For any w ∈ As+(R∞) and a ∈ Z, we have

(4.2) wea = e(−1)l(w)a+2ω(w)w.

Proof. An easy induction on the length l(w) of w. □

A direct consequence of the above formula is the centrality of squares in As+(R∞):

Lemma 4.8. For any a, b ∈ Z, we have

(4.3) e2aeb = ebe
2
a.

Lemma 4.9. The map

δ : As+⩾1(R∞)→ N0,

ea1ea2 · · · ean 7→ gcd(a1 − a2, a2 − a3, . . . , an−1 − an), n ⩾ 2,

ea 7→ 0,

is well defined.

Here As+⩾1(R∞) is the set of elements in As+(R∞) of length ⩾ 1.

Proof. The gcd from the above definition can be replaced with the gcd of all the differences ai−aj ,
where 1 ⩽ i < j ⩽ n. To show its stability under braiding moves, use x − y = (−y + 2x) − x and
a− (−y + 2x) = (a− y)− 2(x− y). □

Definition 4.10. The number δ(w) is called the density of w ∈ As+⩾1(R∞).

The density vanishes if and only if we have a1 = a2 = . . . = an. This happens precisely for
the powers ena . They are called frozen since they cannot be rewritten in another way: no non-
trivial braiding moves apply to them. In what follows, we will mainly consider the interesting case
δ(w) > 0.

Lemma 4.11. For w ∈ As+⩾2(R∞) with δ(w) > 0, let α(w) ∈ N0 be the minimal representative

of the index a of any of its letters ea modulo δ(w). For w = ena ∈ As+⩾1(R∞) with δ(w) = 0, put
α(w) = a. This yields a well-defined map

α : As+⩾1(R∞)→ Z.

Proof. By the definition of δ(w), all letters from any word representing w give the same residue
modulo d. □

Definition 4.12. The number α(w) is called the anchor of w ∈ As+⩾1(R∞).

Note that for any word 1 ̸= w = ea1 . . . ean , the coset α(w) + δ(w) · Z is minimal amongst all
cosets in Z that contain the integers a1, . . . , an.

To better understand how these multiple invariants work, the reader might look at their values
for different elements:

w l0(w) l1(w) ω(w) δ(w) α(w)
e1e1 0 2 0 0 1
e0e−1 1 1 1 1 0
e1e−1 0 2 2 2 1
e1e−1e1 0 3 3 2 1

e−6e−2e−2 3 0 −6 4 2

To get a complete family of invariants, we need to replace l0 and l1 with something finer.
For integers d, a, we denote by As+d,a(R∞) the set of all w ∈ As+( R∞) such that δ(w) = d and

α(w) = a.
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Lemma 4.13. For w ∈ As+d,a(R∞) where d > 0 and 0 ⩽ a < d, take any of its representatives, and

replace each of its letters ex with e(x−a)/d. This yields a well-defined element w with δ(w) = 1.

Note that the index (x− a)/d can alternatively be expressed as ⌊xd⌋, using the floor function.

Proof. The numbers (x − a)/d are integers due to the definition of d = δ(w) and a = α(w). The
operation is well-defined since the map f : x 7→ (x− a)/d intertwines the solution r from Eq. (4.1),
in the sense of r ◦ (f × f) = (f × f) ◦ r. Finally, δ(w) = δ(w)/d = 1. □

Definition 4.14. The element w is called the essentialisation of w ∈ As+⩾2(R∞). The numbers

l0(w) = l0(w) and l1(w) = l1(w) are called the essential even and the odd length of w respectively.

Here is what this looks like in our examples:

w w l0(w) l1(w)
e1e−1 e0e−1 1 1
e1e−1e1 e0e−1e0 2 1

e−6e−2e−2 e−2e−1e−1 1 2

Given d = δ(w) > 0, a = α(w), and w, one can reconstruct w. We will thus restrict our attention
to the case δ(w) = 1 (corresponding to the essentialisations) in the major part of what follows.

Definition 4.15. The elements w ∈ As+⩾2(R∞) with δ(w) = 1 are called full. The set of all such
elements is called the full reflection semigroup, denoted by FRS.

This object plays a role analogous to the full transposition monoids FTSd in Section 3. It is
indeed a semigroup, because of the following property.

Lemma 4.16. The product of any full element w ∈ FRS with any v ∈ As+(R∞) is full. That is,
both wv and vw lie in FRS.

Proof. The differences in the gcd used to compute δ(wv) or δ(vw) include those used to compute
δ(w). □

The purpose of the remainder of this section is to prove that the 5 invariants above completely
determine an element from As+(R∞):

Theorem 4.17. Two elements coincide in As+⩾1(R∞) if and only if they have the same values of

the invariants δ, α, ω, l0, and l1.

This will also allow us to construct a normal form in this monoid, and to completely determine
the algebraic structure of the full part FRS.

Let us start with considering short elements in As+(R∞).
In length 1, every element admits a unique presentation, ea, and the index a is exactly the weight

of the element: a = ω(ea).
In length 2, a braiding move can be written as

w = eaeb = e−b+2aea = ea+ω(w)ea,

hence the set of all the words representing w is

(4.4) {ea+k ω(w)ea+(k−1)ω(w) : k ∈ Z}.

Such a set is uniquely determined by ω(w) and α(w) (which is a modulo ω(w)). Note that in degree
2 the density δ(w) is just the absolute value of the weight.

In the first interesting case, that of length 3, the weight and the density provide a complete
invariant:

Lemma 4.18. Any length 3 element w ∈ As+(D∞) can be presented as g = e2ω(w)+δ(w)eω(w).

In particular, this presentation tells us that the anchor α(w) is precisely ω(w) modulo δ(w).
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Proof. To a length 3 word eaebec representing w, assign the difference vector (d1, d2) = (a−b, b−c).
A rewriting step eaebec ∼ e−b+2aeaec or eaebec ∼ eae−c+2beb changes the difference vector to (d1, d2+
d1) or (d1 − d2, d2) respectively. Performing the Euclidean algorithm on the couple (d1, d2), we
obtain an expression ea′eb′ec′ ∼ eaebec with difference vector (0, d), where d = gcd(d1, d2) = δ(w).
It follows that w = e2a′aa′−d. Finally, ω(w) = a′−a′+(a′−d) = a′−d, yielding a′ = ω(w)+δ(w). □

The length 2 and length 3 cases exhibit fundamentally different behaviour. Starting from length
4, we at last get a uniform normal form:

Theorem 4.19. Any full element w ∈ As+⩾4(R∞) can be written as

(4.5) w = ek0e
l
1ec, where k, l > 0, c ∈ Z.

We emphasize that we allow c ∈ {0, 1} here. This presentation is unique for w with l0(w) or l1(w)
equal to 1. Other w admit exactly two such presentations.

Our proof begins with several lemmata, interesting per se.
First, we will frequently work with the squares e2a as if they were simple generators ea. Let us

explain why this is legitimate.

Lemma 4.20. Let ea1 · · · eam and eb1 · · · ebm be two words representing the same element w ∈
As+(D∞). Let k1, . . . , km ∈ N be m positive integers of the same parity. Then the word ek1a1 · · · e

km
am

can be rewritten in As+(D∞) as e
kσ(1)

b1
· · · ekσ(m)

bm
. Here σ ∈ Sm is some permutation.

This lemma remains valid for all involutive quandles.

Proof. The rewriting procedure for w consists in applying the braiding moves exey = ex▷yex. But
we have an analogous relation for powers, epxe

q
y = eqx▷ye

p
x, in two situations:

(1) for odd p, since

epxey = exeye
p−1
x = ex▷ye

p
x;

we used that for odd p, ep−1
x is a product of squares, hence central by (4.3);

(2) for even p and q, since

epxe
q
y = ep−1

x eqyex = eqx▷ye
p
x;

we first used the centrality of eqy for even q, then the previous calculation for odd p− 1. □

We also need the following arithmetic lemma:

Lemma 4.21. Let a, b, c ∈ Z, with a ̸= b. Then there exists an n ∈ N such that

gcd(a+ nc, b+ nc) = gcd(a, b, c).

Moreover, if a and b are of different parity, then there are both even and odd n satisfying this
condition.

Proof. The division by gcd(a, b, c) reduces the lemma to the case gcd(a, b, c) = 1. We will present
gcd(a+nc, b+nc) in the equivalent form gcd(a+nc, b−a). A prime divisor p of b−a cannot divide
a and c simultaneously, as otherwise it would be also a divisor of b and hence of gcd(a, b, c) = 1.
Then there exists an np ∈ Z such that p does not divide a + npc. Indeed, one can take np = 0 if
p ∤ a and np = 1 otherwise. By the Chinese remainder theorem, there exists an n ∈ N congruent
to np for all prime divisors p of b − a ̸= 0. Then no prime divisor of b − a divides a + nc, and
gcd(a+ nc, b− a) = 1.

Now, if a− b is odd, the above argument concerns only odd primes p. Therefore, when using the
Chinese remainder theorem, one can impose any value of n mod 2. □

Proof of Theorem 4.19. Take any presentation of a w ∈ As+⩾4(D∞) with δ(w) = 1, and start simpli-
fying it. A repeated application of Lemma 4.18 to three-letter segments of w yields a presentation

w = e2b1 · · · e
2
bmh, bj ∈ Z, h ∈ As+(D∞) of length ⩽ 2.
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Lemmata 4.20 and 4.18 allow us to transform this presentation into

(4.6) w = e2ka e2lb h, a, b ∈ Z, k, l ∈ N0, h ∈ As+(D∞) of length ⩽ 2.

Case 1: a long tail h = eced.

Lemma 4.22. Any g = e2aebec ∈ FRS can be rewritten in at least one of the following forms:

g = e20e1e1−ω(g), or g = e0e
2
1e−ω(g).

Proof. The element eaebec is still full. By Lemma 4.18, we can rewrite g as

g = ea · eaebec ∼ eae
2
ded−1 ∼ e2deaed−1.

Since rewriting leaves the weight unchanged, we have ω(g) = a− (d− 1), so d = a− ω(g) + 1, and
the above rewriting sequence becomes

(4.7) g ∼ e2a−ω(g)+1eaea−ω(g).

Observe that the last word depends only on the first letter ea and the weight ω(g) of the original
word. By Eq. (4.3) and Eq. (4.2), it can be rewritten as

e2a−ω(g)+1eaea−ω(g) ∼ eaea−ω(g)e
2
a−ω(g)+1 ∼ e2a−ω(g)+1+2(a−(a−ω(g)))eaea−ω(g) = e2a+ω(g)+1eaea−ω(g).

Now, applying Eq. (4.7) with the first letter a + ω(g) + 1 instead of a and the same weight ω(g),
we obtain

g ∼ e2a+2ea+ω(g)+1ea+1.

A repetition of this procedure or its inverse leaves us either with an expression of the form

e22eω(g)+1e1 ∼ e22e1e1−ω(g) ∼ e1e
2
0e1−ω(g) ∼ e20e1e1−ω(g),

or with an expression of the form

e21eω(g)e0 ∼ e21e0e−ω(g) ∼ e0e
2
1e−ω(g). □

We will now apply a similar reduction to elements of the form g = e2ka e2lb eced.

First assume k, l > 0 and a ̸= b. Lemma 4.20 allows us to apply to e2ka e2lb the arguments used

for the length 2 case, and rewrite it as e2k
′

a+n(a−b)e
2l′

a+(n−1)(a−b) = e2k
′

a+n(a−b)e
2l′

b+n(a−b) for any n ∈ Z
(cf. Eq. (4.4)), with {k′, l′} = {k, l}. Putting a′ = a+ n(a− b) and b′ = b+ n(a− b), we get

(4.8) w = e2k
′

a′ e
2(l′−1)
b′ e2b′eced.

We would like to apply Lemma 4.22 to the part e2b′eced of this word. For this we have to ensure
that it is full. We have

δ(e2b′eced) = gcd(b′ − c, c− d) = gcd(b′ − c, b′ − d) = gcd(b+ n(a− b)− c, b+ n(a− b)− d).

By Lemma 4.21, for some n the latter expression equals

gcd(b− c, b− d, a− b) = gcd(a− b, b− c, c− d) = δ(e2ka e2lb eced) = 1.

We will work with such an n, and write again a, b, k, l instead of a′, b′, k′, l′ for simplicity.
Lemma 4.22 now yields

(4.9) w = e2ka e
2(l−1)
b e20e1ec′ or e

2k
a e

2(l−1)
b e0e

2
1ed′ ,

with c′ = 1− ω(w) or d′ = −ω(w).

Lemma 4.23. For any u ∈ As+(D∞) and t ∈ Z, we have the equality

e2tue0e1 = e2τue0e1,

where τ = 0 for even t and τ = 1 for odd t.

Proof. Using the centrality of the square e2t and the quasi-commutativity relation (4.2), we get

e2tue0e1 ∼ ue0e1e
2
t ∼ ue2t+2(0−1)e0e1 = e2t−2e0e1.

Iterating this procedure or its inverse, one replaces t with τ . □
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This lemma allows us to replace a and b in Eq. (4.9) with α and β ∈ {0, 1}. Moving the central
elements e2β and e2α inside this word, one gets the desired form (4.5).

If, say, k = 0 and l > 0, then in w = e
2(l−1)
b e2beced we directly have δ(e2beced) = δ(e2lb eced) = 1,

and the above arguments apply.
The case k = l = 0 is impossible since we are in length ⩾ 4.

If a = b, then e2ka e2lb = e
2(k+l)
b , and we are in the previous situation.

Case 2: an empty tail h = 1. If, say, l > 0, then the presentation w = e2ka e
2(l−1)
b ebeb brings us

to the previous case. Alternatively, this case can be dealt with using Lemma 4.20.
Case 3: a 1-letter tail h = ec. In length 5, we have

w = e2ae
2
bec = ea · eae2bec,

with possibly equal a and b. The element eae
2
bec is still full, thus Lemma 4.22 yields

w ∼ eae
2
0e1ec′ or eae0e

2
1ed.

In the first case, we once again apply Lemma 4.22, together with the representation (4.6), to the
underlined subword to get

w ∼ e0e−ae0e1ec′ ∼ e0e
k
0e

l
1ec′′ = ek+1

0 el1ec′′ , k, l > 0.

Note that the element e−ae0e1ec′ is indeed full because of the index difference 0− 1 = −1.
The second case is similar:

w ∼ eae0e1e1ed ∼ eae0e1e−d+2e1 ∼ ek0e
l
1ed′e1 ∼ ek0e

l+1
1 e2−d′ , k, l > 0.

In greater length, we have

w = e2ka e2lb ec ∼ e2(k−1)
a e

2(l−1)
b e2ae

2
bec ∼ e2(k−1)

a e
2(l−1)
b ek

′
0 e

l′
1 ec′ , k′, l′ > 0.

We assumed k, l > 0 (otherwise a single power, say e2ka , should be split into two powers), and used
the fullness of the element e2ae

2
bec. Lemma 4.23 allows one to replace a and b with α and β ∈ {0, 1},

and the centrality of squares to rearrange the result into the desired form.
It remains to discuss whether the presentation (4.5) is unique. For a given parity of c, the powers

k and l are uniquely determined from l0(w) and l1(w); the value of c can then be computed from
the weight ω(w). Thus w admits at most 2 desired presentations, one for each parity of c. The
assumption l0(w) = 1 forces k to be 1 and c to be odd; thus w admits only 1 desired presentation.
The case l1(w) = 1 is analogous.

We will now show that elements w with l0(w) > 1 and l1(w) > 1 admit 2 desired presentations.
In length 4, these two constraints imply l0(w) = l1(w) = 2. Then ω(g) is even, and in the proof of
4.22, Eq. (4.7) allows us to change the parity of the first letter. Then the algorithm from the proof
can present g both as e20e1e1−ω(g) and e0e

2
1e−ω(g).

In general even length, let us go back to the presentation w = e2ka e2lb eced that we have obtained
before. If c and d are of the same parity, then for the element e2b′eced in Eq. (4.8) to be full, b′ needs
to be of the opposite parity. Hence l0(e

2
b′eced) = l1(e

2
b′eced) = 2, and the length 4 case yields for w

two presentations of the form (4.5), with last letters of different parity. If c and d are of different
parity, then so are a and b (otherwise l0(w) or l1(w) = 1). Then Lemma 4.21 produces an odd and
an even n satisfying gcd(b+ n(a− b)− c, b+ n(a− b)− d) = gcd(b− c, b− d, a− b). Since a− b is
odd, one can thus force any desired parity of b′ = b+ n(a− b). Our rewriting algorithm will then
produce two presentations of the form (4.5), with the last letters of different parity.

In the odd length, the indices a and b in the presentation w = e2ka e2lb ec are of different parity

(otherwise l0(w) or l1(w) ⩽ 1). Since the central elements e2ka and e2lb can be interchanged in this
expression, one may assume that a and c are of the same parity. But then l0(eae

2
bec) = l1(eae

2
bec) =

2, and once again the length 4 case yields for w two presentations of the form (4.5), with the last
letters of different parity. □

Theorem 4.17 now follows easily:
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Proof of Theorem 4.17. Since the length ⩽ 3 case was settled in Lemma 4.18 and preceding para-
graphs, it remains to show how to reconstruct w ∈ As+⩾4(R∞) from the evaluations of the five

invariants δ, α, ω, l0, and l1. First, for the essentialisation w, we know the values l0(w) = l0(w),
l1(w) = l1(w), and

ω(w) =

{
(ω(w)− α(w)) / δ(w) in odd length,

ω(w)/ δ(w) in even length.

Theorem 4.19 then allows one to reconstruct w, which, together with the values ω(w) and α(w),
gives back w. □

For full elements, these numeric invariants are sufficient not only to distinguish the elements of
FRS, but also to describe the algebraic structure of this semigroup:

Theorem 4.24. The following map is an injective morphism of semigroups:

ι : FRS→ Z ⋊ (N× N),
w 7→ (ω(w), l0(w), l1(w)).

Here N× N acts on Z via (k, l) ·m = (−1)k+lm. The image of this inclusion is

Im(ι) = {(m, k, l) : k, l ∈ N, m ∈ Z, l ≡ m mod 2}.

Proof. The map ι preserves products, since

ι(v) · ι(w) = (ω(v), l0(v), l1(v)) · (ω(w), l0(w), l1(w))

= (ω(v) + (−1)l0(v)+l1(v) ω(w), l0(v) + l0(w), l1(v) + l1(w))

= (ω(v) + (−1)l(v) ω(w), l0(vw), l1(vw)) = (ω(vw), l0(vw), l1(vw)) = ι(vw).

Theorem 4.17 guarantees its injectivity (recall that for a full w, the evaluations δ(w) = 1 and
α(w) = 0 are irrelevant). Further, ω(w) and l1(w) are of the same parity, since the l0(w) even-
indexed letters in w do not change the parity of the weight ω(w), whereas the l1(w) odd-indexed
letters do. Finally, take k, l ∈ N and m ∈ Z with l ≡ m mod 2. If l > 1, then

(m, k, l) = ι(ek0e
l−1
1 ec), where c =


1−m k, l even,

1 +m l even, k odd,

m k even, l odd,

−m k, l odd.

Indeed, in all four cases c is odd, implying the desired values of l0 and l1, and the weight of ek0e
l−1
1 ec

is m. In the same way,
(m, k, 1) = ι(ek−1

0 e1e1+(−1)km). □

As a consequence, the full part of the structure monoid of the infinite reflection solution injects
into the structure group of this solution, exactly as it happened for transposition solutions:

Corollary 4.25. The tautological map

FRS→ As(R∞),

ea1 . . . eak 7→ ea1 . . . eak

is an injective morphism of semigroups.

Proof. It suffices to show that the invariants ω, l0 and l1 extend to the group As(R∞). To do this,
one easily checks that the assignment

As(R∞)→ Z ⋊ (Z× Z),
ea 7→ (a, 1, 0) for even a,

ea 7→ (a, 0, 1) for odd a,



26 CARSTEN DIETZEL, EDOUARD FEINGESICHT, VICTORIA LEBED

extends to the entire group As(R∞), and that for a product of generators (without any inverses)
this map is precisely ω×l0 × l1. □

The algebraic structure of the entire monoid As+(R∞) is much more subtle. For instance, the
density of a product depends not only on the density of each component, but also on their anchors:

Lemma 4.26. The density of the product of two elements v, w ∈ As+⩾1(R∞) can be computed as
follows:

(4.10) δ(vw) = gcd (δ(v), δ(w), α(v)− α(w)) .

Proof. Putting v = ea1ea2 · · · ean and w = eb1eb2 · · · ebm , we get

δ(vw) = gcd(a1 − a2, a2 − a3, . . . , an−1 − an, an − b1, b1 − b2, . . . , bm−1 − bm)

= gcd(δ(v), an − b1, δ(w)) = gcd(δ(v), α(v)− α(w), δ(w)).

Indeed, since an = α(v) + δ(v)a′ and b1 = α(w) + δ(w)b′ for some a′, b′ ∈ Z, we have

an − b1 ≡ α(v)− α(w) mod gcd(δ(v), δ(w)). □

5. How structure monoids of reflection solutions grow

In this section, we will present a normal form for the structure monoids of all finite reflection
solutions (Rd, r▷), inherited from the normal form for the infinite reflection solution (R∞, r) (The-
orem 4.19). This will allow us to compute the growth series of these monoids. Recall that we
identify the set Rd with Zd; the solution r▷ then takes the form (4.1).

We will start by adapting the five invariants for As+⩾1(R∞) to the finite setting. The proofs of
the following results repeat verbatim those of the analogous statements from Section 4 ; one simply
turns all equalities into congruences modulo d.

Lemma 5.1. The map

δ : As+⩾1(Rd)→ Z,
ea1ea2 · · · ean 7→ gcd(d, a1 − a2, a2 − a3, . . . , an−1 − an), n ⩾ 2,

ea 7→ d,

is well defined.

Note that here it is convenient to impose δ(ea) = d rather than 0, which was our choice in the
infinite case.

Definition 5.2. The number δ(w) ∈ Z is called the density of w ∈ As+⩾1(Rd). The elements w
with δ(w) = 1 are called full. The set of all such elements is called the full reflection semigroup of
level d, denoted by FRSd.

We will soon see that FRSd is indeed a sub-semigroup of As+⩾1(Rd).

Lemma 5.3. For w ∈ As+⩾1(Rd), let α(w) ∈ N0 be the minimal representative of the index a of
any of its letters ea modulo δ(w). This yields a well-defined map

α : As+⩾1(Rd)→ N0.

Definition 5.4. The number α(w) is called the anchor of w ∈ As+⩾1(Rd).

Notation 5.5. The (possibly empty) set of all w ∈ As+⩾1(Rd) with the same density c and the

same anchor a is denoted by As+c,a(Rd).

This set is non-empty if and only if c is a divisor of d and a lies in {0, 1, . . . , c− 1}.

Proposition 5.6. For any c | d and a ∈ {0, 1, . . . , c − 1}, the set As+c,a(Rd) is a sub-semigroup of

As+⩾1(Rd) isomorphic to the full reflection semigroup FRS d
c
:

As+c,a(Rd) ∼= FRS d
c
.
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Proof. Relation (4.10) for densities is still valid in As+⩾1(Rd). For v and w sharing the same density
c and the same anchor a, it yields

δ(vw) = gcd (c, c, a− a) = c.

Also, the indices of all letters in any expression for vw are congruent to a mod c. Hence vw ∈
As+c,a(Rd), and the latter is a sub-semigroup.

Next, consider the arithmetic bijection

f : {x ∈ Zd : x ≡ a mod c} ∼→ Z d
c
,

x 7→ x− a

c
.

Like any affine function, it intertwines the solution r from Eq. (4.1), and thus induces a semigroup
injection f : As+c,a(Rd) ↪→ As+⩾1(R d

c
). Moreover, the condition δ(w) = c implies δ(f(w)) = 1, thus

f actually injects As+c,a(Rd) into FRS d
c
. To see the surjectivity, for any u = ea1 · · · ean ∈ FRS d

c
,

consider the well-defined element u′ = ea1c+a · · · eanc+a ∈ As+(Rd). Its degree is c · δ(u) = c, and
its anchor is a; hence u′ ∈ As+c,a(Rd). By construction, f(u′) = u, thus u′ is a preimage of u. Hence

f yields the desired semigroup isomorphism. □

Thus the semigroup As+⩾1(Rd) splits into a disjoint union of sub-semigroups. For each divisor
c of d, there are exactly c sub-semigroups isomorphic to FRS d

c
. The computation of the growth

series of the structure monoids As+(Rd) is thus reduced to that of its full components. Note that
as an abuse of notation, we write

GFRSd(t) =
∑

g∈FRSd

tl(g),

which is not a growth series but a restricted growth series.

Corollary 5.7. For any integer d ⩾ 2, the growth series of the monoids As+(Rd) and FRSc are
related as follows:

(5.1) GAs+(Rd)
(t) = 1 +

∑
c|d

d

c
· GFRSc(t).

Note that we exchanged the roles of c and d
c from the preceding arguments.

We will thus focus on the full semigroups FRSd. Their structure will be entirely captured by the
weight and the length functions, the latter being split into the odd and the even parts for even d.

Lemma 5.8. For any integer d ⩾ 2, the assignment

l : As+(Rd)→ N0,

ea 7→ 1

uniquely extends to a well-defined semigroup morphism. For even d, is can be refined into another
semigroup morphism by imposing

l0 × l1 : As+(Rd)→ N0 × N0,

ea 7→

{
(1, 0) if a is even,

(0, 1) if a is odd.

For even d, we consider an element in Zd to be even resp. odd if any of its representatives in Z is
even resp. odd.

Definition 5.9. The numbers l(w), l0(w), and l1(w) are called the length, the even length, and the
odd length of w respectively.
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Lemma 5.10. The map

ω : As+(Rd)→ Zd,

ea1ea2 · · · ean 7→ a1 − a2 + · · ·+ (−1)n+1an,

1 7→ 0

is well defined.

Definition 5.11. The element ω(w) ∈ Zd is called the weight of w.

Now, we are ready to adapt the normal form from Theorem 4.19 to the finite setting:

Theorem 5.12. Any full element w ∈ As+⩾4(Rd) can be written as

(5.2) w = ek0e
l
1ec, where k, l > 0, c ∈ Zd.

For even d, this presentation is unique for w with l0(w) or l1(w) equal to 1, whereas other w admit
exactly two such presentations.

For odd d and any w, there is exactly one such presentation with l = 1.

Before presenting the proof, we need a generalisation of Lemma 4.21:

Lemma 5.13. Take k ⩾ 2 integers a1, . . . , ak, and some d ∈ Z. Then there are integers m1, . . . ,mk

such that
gcd(a1 +m1d, . . . , ak +mkd) = gcd(d, a1, a2, . . . , ak).

If d is odd, then these integers can be chosen such that ai +mid is odd for all 1 ⩽ i ⩽ k.

Proof. Without loss of generality, we may assume a1 ̸= 0. Indeed, for this one should permute the
ai if necessary; this does not work only when all ai = 0, in which case the statement is trivial.

We first prove that for all a1, a2, d ∈ Z, there is an m such that gcd(a1, a2+md) = gcd(d, a1, a2).
Dividing by gcd(d, a1, a2), we may assume that gcd(d, a1, a2) = 1. For any prime divisor p|a1, there
exists an integer m(p) ∈ Z such that p does not divide a2+md for any m ≡ m(p) mod p. Applying
the Chinese remainder theorem, we obtain an m ∈ Z such that a2 +md and a1 have no common
prime divisors, providing gcd(a1, a2 +md) = 1.

Now for the general case, let d, a1, . . . , ak ∈ Z. The previous paragraph provides us with
m2, . . . ,mk ∈ Z such that gcd(a1, ai +mid) = gcd(d, a1, ai) for 1 ⩽ i ⩽ k. Then with m1 = 0, we
have

gcd(d, a1, . . . , ak) = gcd (gcd(d, a1, a2), gcd(d, a1, a3), . . . , gcd(d, a1, ak))

= gcd (gcd(a1, a2 +m2d), gcd(a1, a3 +m3d), . . . , gcd(a1, ak +mkd))

= gcd(a1, a2 +m2d, . . . ak +mkd) = gcd(a1 +m1d, . . . , ak +mkd).

If d is odd, then replace ai with a′i = ai + m′
id in a way such that a′i is odd for all 1 ⩽ i ⩽ k.

Then
gcd(d, a1, . . . , ak) = gcd(d, a′1, . . . , a

′
k) = gcd(2d, a′1, . . . , a

′
k).

Now the first statement of the lemma shows the existence of m′′
1, . . . ,m

′′
k such that

gcd(2d, a′1, . . . , a
′
k) = gcd(a′1 +m′′

1 · 2d, . . . , a′k +m′′
k · 2d)

= gcd(a1 + (m′
1 + 2m′′

1)d, . . . , ak + (m′
k + 2m′′

k)d)

= gcd(a′1 + 2m′′
1d, . . . , a

′
k + 2m′′

kd).

It follows that gcd(d, a1, . . . , ak) = gcd(a′1+2m′′
1d, . . . , a

′
k +2m′′

kd). Since the a′i are odd, so are the
a′i + 2m′′

i d. □

Proof of Theorem 5.12. Take an element

u = ea1 · · · eak ∈ FRSd.

Its fullness can be expressed by the condition

gcd(d, a1 − a2, a1 − a3, . . . , a1 − ak) = 1.
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By Lemma 5.13, there are some mi ∈ Z with

gcd(a1 − a2 +m1d, a1 − a3 +m2d, . . . , a1 − ak +mk−1d) = 1.

This allows us to lift u to a full element

u′ = ea1ea2−m1d · · · eak−mk−1d ∈ FRS.

By Theorem 4.19, it can be presented as

u′ = ek0e
l
1ec′ for some k, l > 0, c′ ∈ Z.

Taking a quotient modulo d yields a new presentation of u:

u = ek0e
l
1ec for some k, l > 0, c ∈ Zd.

For even d, the parameters k, l and c are determined by ω(u), l0(u), l1(u) and the parity of
c. The number of such presentations is then determined in the same way as in the infinite case
(Theorem 4.19).

For odd d, we assume a1 odd; otherwise replace each ai with ai+d. Lemma 5.13 guarantees that
all elements a1− ai +mi−1d above can be assumed odd, implying that all the ai−mi−1d are even.
This is translated by l1(u

′) = 1. Then the presentation from Theorem 4.19, takes the particular
form

u′ = ek0e1ec′ ,

inducing an analogous presentation for u. Here k = l(u) − 2, and the parameter c for u is then
uniquely determined by ω(u). Such a presentation is thus unique. □

In a similar way, one adapts Theorem 4.24:

Theorem 5.14. For even d, the following map is an injective morphism of semigroups:

ιd : FRSd → Zd ⋊ (N× N),
w 7→ (ω(w), l0(w), l1(w)).

The image of this inclusion is

Im(ιd) = ({(m, k, l) : k, l ∈ N, k + l > 2 m ∈ Zd, l ≡ m mod 2}) ⊔ (Z∗
d × {(1, 1)}).

where Z∗
d = {a ∈ Zd : ⟨a⟩ = Zd}.

For odd d > 1, the following map is an injective morphism of semigroups:

ιd : FRSd → Zd ⋊N⩾2,

w 7→ (ω(w), l(w)).

The image of this inclusion is

Im(ιd) = (Zd × N⩾3) ⊔ (Z∗
d × {2}).

For d = 1, the length function l realises a semigroup isomorphism FRS1 ∼= N.

Here N× N and N act on Zd via (k, l) ·m = (−1)k+lm and k ·m = (−1)km respectively.
Note that the injectivity statements from the theorem, together with Proposition 5.6, allow one

to exhibit a complete list of numerical invariants for the monoid As+(Rd) (5 for even d and 4 for
odd d), in the spirit of Theorem 4.17. This theorem also implies that the full part of the structure
monoids of all finite reflection solutions inject into the corresponding structure groups, as it was
established in the infinite case in Corollary 4.25.

Proof. The d = 1 case is straightforward. In the remainder of the proof we assume d > 1. In
particular, all full elements are of length ⩾ 2.

The well-definedness of the maps ιd is checked in the same way as for the infinite reflection
solution R∞. Their injectivity in length ⩾ 4 is proved using the normal forms from Theorem 5.12.

In length 3, the arguments from the proof of Theorem 5.12 together with Lemma 4.22 yield
presentations of the form

w = e2ω(w)+1eω(w).
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Note that an element of this form is necessarily full because of the index difference (ω(w) + 1) −
ω(w) = 1. In length 2, the fullness of w is equivalent to the invertibility of its weight, ω(w) ∈ Z∗

d.
Then the discussion before Lemma 4.22 yields presentations of the form

w = e0e−ω(w).

In both cases, the weight ω(w) determines w uniquely. Moreover, taking elements of the two
particular forms above, one realises any weight in Zd and Z∗

d respectively. This describes the
corresponding components of Im(ιd).

From now on, we work in length ⩾ 4.
Let us prove the surjectivity of ιd for odd d > 1. Given some m ∈ Zd and k ∈ N⩾4, the element

w = ek−2
0 e1ec ∈ As+(Rd), where c =

{
1 +m for odd k,

1−m for even k

is full because of the index difference 0− 1, and satisfies l(w) = k and ω(w) = m. This completes
the description of Im(ιd) in this case.

For even d, the proof of the suggested description of Im(ιd) in length ⩾ 4 repeats verbatim the
proof of Theorem 4.24. □

The realisation of the monoids FRSd inside simpler monoids with easily extractable length allows
us to easily count the number of their elements of given length, and hence compute the growth
series:

Corollary 5.15. For any integer d ∈ N, we have

GFRSd(t) =


t

1−t , d = 1;

φ(d)t2 + d t3

1−t , d odd, d > 1;

φ(d)t2 + d
2
t3(2−t)
(1−t)2

, d even.

Notation φ(n) stands here for Euler’s totient function, which counts the number of integers
between 1 and n coprime with n.

Proof. For d = 1, Theorem 5.14 provides exactly one element in each length ⩾ 1.
For odd d > 1, it gives φ(d) = #Z∗

d elements in length 2, and d elements in each length ⩾ 3.
For even d, it gives again φ(d) = #Z∗

d elements in length 2, and, in each length n ⩾ 3, the
number of elements is

d

2
·#{k, l ∈ N : k + l = n} = d

2
· (n− 1).

We thus need to compute∑
n⩾3

(n− 1)tn =

(∑
n⩾4

tn

)′

− 2
∑
n⩾3

tn =
t3(2− t)

(1− t)2
. □

To compute the growth series of the entire structure monoids As+(Rd), it remains to plug our
formulas for the full parts into Eq. (5.1).

Theorem 5.16. For any d ∈ N, the growth series of the structure monoid of the size d reflection
solution has the following form:

GAs+(Rd)
(t) = 1 + d ·

t+

∑
c|d

φ(c)

c

 t2 + τ(d)
t3

1− t
+ τ

(
d

2

)
t4

2(1− t)2

 .

Here τ is the number-of-divisors function:

τ(a) =

{
#{c ∈ N : c|a}, a ∈ N,
0, a /∈ N.
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Note that the expression d ·
∑

c|d
φ(c)
c can be seen as the convolution of φ and Id.

The result depends heavily on the arithmetic properties of d. This is not surprising, given that
the algebraic structure of dihedral groups depends heavily on the arithmetic properties of their
size.

Proof. Let us split the sum in Eq. (5.1) into three parts, according to the three cases in our
computation of GFRSc(t):

GAs+(Rd)
(t) = 1 + d · GFRS1(t) +

∑
1<c|d
c odd

d

c
· GFRSc(t) +

∑
c|d

c even

d

c
· GFRSc(t)

= 1 + d · t

1− t
+ d ·

∑
1<c|d
c odd

(
φ(c)

c
t2 +

t3

1− t

)
+ d ·

∑
c|d

c even

(
φ(c)

c
t2 +

t3(2− t)

2(1− t)2

)

= 1 + d ·

 t

1− t
+

∑
1<c|d

φ(c)

c

 t2 +
∑
1<c|d

t3

1− t
+
∑
c|d

c even

t4

2(1− t)2


= 1 + d ·

t+

∑
c|d

φ(c)

c

 t2 +
∑
c|d

t3

1− t
+
∑
c|d

c even

t4

2(1− t)2


= 1 + d ·

t+

∑
c|d

φ(c)

c

 t2 + τ(d)
t3

1− t
+ τ

(
d

2

)
t4

2(1− t)2

 . □
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(Grenoble, 1998).

[3] D. Bessis. The dual braid monoid. Annales Scientifiques de l’École Normale Supérieure, 36(5):647–683, 2003.
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[5] F. Cedó, E. Jespers, L. Kubat, A. Van Antwerpen, and C. Verwimp. On various types of nilpotency of the

structure monoid and group of a set-theoretic solution of the Yang-Baxter equation. J. Pure Appl. Algebra,
227(2):Paper No. 107194, 38, 2023.
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[12] T. Gateva-Ivanova, E. Jespers, and J. Okniński. Quadratic algebras of skew type and the underlying monoids.

J. Algebra, 270(2):635–659, 2003.
[13] T. Gateva-Ivanova and M. Van den Bergh. Semigroups of I-type. J. Algebra, 206(1):97–112, 1998.
[14] E. Jespers, L. u. Kubat, and A. Van Antwerpen. The structure monoid and algebra of a non-degenerate set-

theoretic solution of the Yang-Baxter equation. Trans. Amer. Math. Soc., 372(10):7191–7223, 2019.
[15] V. Lebed. Conjugation groups and structure groups of quandles, 2024.
[16] V. Lebed and L. Vendramin. On structure groups of set-theoretic solutions to the Yang–Baxter equation. Proc.

Edinb. Math. Soc. (2), 62(3):683–717, 2019.
[17] A. Mann. How groups grow, volume 395 of London Mathematical Society Lecture Note Series. Cambridge Uni-

versity Press, Cambridge, 2012.
[18] O. Ore. Some remarks on commutators. Proceedings of the American Mathematical Society, 2(2):307–314, 1951.
[19] L. Paris and O. Varghese. The spherical growth series of Dyer groups. Proc. Edinb. Math. Soc. (2), 67(1):168–187,

2024.
[20] G. C. Shephard and J. A. Todd. Finite unitary reflection groups. Canad. J. Math., 6:274–304, 1954.



32 CARSTEN DIETZEL, EDOUARD FEINGESICHT, VICTORIA LEBED

[21] L. Vendramin. Skew braces: a brief survey. In Geometric methods in physics XL, Trends Math., pages 153–175.
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