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Résumé
Dans cette thèse nous nous intéressons à l’étude des solutions ensemblistes de l’équation de
Yang–Baxter. Le point de départ de notre approche sont les travaux de Patrick Dehornoy,
qui a établi des parallèles entre les groupes de structures des solutions et la théorie des
groupes d’Artin–Tits. Nous étudions donc les groupes des structures d’un point de vue de
la théorie de Garside, à travers des représentations monomiales, dans le but d’améliorer
la compréhension des solutions pour amener à leur éventuelle classification. Dans ce sens,
nous étudions les bornes et les valeurs d’une constante définie par Dehornoy pour chaque
solution. Nous nous intéressons ensuite à l’irréductibilité des représentations monomiales
de ces solutions. Enfin, nous construisons et étudions des algèbres de Hecke pour les
solutions, en soulignant les points communs et les différences avec la théorie connue des
algèbre de Hecke pour les groupes d’Artin–Tits.

Abstract
In this thesis we are interested in set-theoretical solutions to the Yang–Baxter equation.
The starting point of our approach is the work of Patrick Dehornoy, who established
parallels between the structure groups of solutions and the theory of Artin–Tits groups.
We thus study the structure groups from a Garside theory perspective, through monomial
representations, with the aim of improving our understanding of solutions and eventually
classifying them. In this sense, we study the bounds and values of a constant defined
by Dehornoy for each solution. We then focus on the irreducibility of the monomial
representations of these solutions. Finally, we construct and study Hecke algebras for
solutions, highlighting the similarities and differences with the known theory of Hecke
algebra for Artin–Tits groups.
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Nomenclature

∅ The empty set

N Monoid of non-negative integers

Z Group of integers

Q Field of fractions of integers

R Field of real numbers

C Field of complex numbers

⟨S | R⟩ Group generated by S up to the relations R

G/H Quotient of a group G by a normal subgroup H

Sn Symmetric group on n elements

Mn(R) Group of square matrices of size n over a ring R

GLn(R) Group of invertible square matrices of size n over a ring R

Tr(A) Trace of a matrix A

R[G] Algebra of a group G over a ring R

R[X] Ring of polynomials in X over ring R

R[X±1] Ring of Laurent series in X over a ring R

K(X) Field of rational functions over a field K

X × Y Direct product of sets

N ⊗RM Tensor product of R-modules

rad(A) Radical of an algebra
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a | b a divides b in N

lcm(a1, . . . , an) Least common multiple of the positive integers ai

gcd(a1, . . . , an) Greatest common divisor of the positive integers ai

π(n) Set of primes dividing an integer

vp(n) p-valuation of an integer

char(K) Characteristic of a field K
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Introduction

Coxeter groups

Artin–Tits groups and Coxeter groups

Braids group were first introduced and studied by E. Artin in [Art25]. They are better
seen diagrammatically: a n-braid is a set of n strands which can cross over and under, up
to ambient isotopy (moving the strands without crossing them). The operation on two
n-braids is then given by just stacking the first one on top of the other.

◦ =

Figure 1: Example on 3-braids

Then, in [Art47, Theorem 16] a presentation of the n-braid group Bn is given as

Bn =
〈
σ1, . . . , σi−1

∣∣∣∣∣ σiσi+1σi = σi+1σiσi+1
σiσj = σjσi if |i− j| ≥ 2

〉

where σi corresponds to a "positive" exchange of the i-th and i + 1-th strands, the com-
mutativity relation σiσj = σiσi holds for strands far enough, and the so-called "braid
relation" holds for close strands.
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σ3

Figure 2: A generator of B6

=

(a) Far commutativity relation

=

(b) Braid relation

=

(c) Inverse relation

Figure 3: The relations of Bn

For any braid, looking at the final position of each strand (from top to bottom) yields a
morphism from Bn to the symmetric group Sn. This surjection amounts to adding to Bn

the relation σ2
i for all σi. For instance the generator σi is associated to the transposition

(i i+ 1).
Those groups were then generalized by J. Tits in [Tit66] to what are now called Artin–

Tits groups as follows: consider a set S and for any s ̸= t in S take a number ms,t in
N≥2 ∪ {∞} with ms,t = mt,s, the group is then defined by the presentation

A := ⟨S | stst . . .︸ ︷︷ ︸
ms,t

= tsts . . .︸ ︷︷ ︸
ms,t

,∀s ̸= t ∈ S when ms,t ̸=∞ ⟩.

The associated Coxeter group W is then defined by adding to the presentation the
relations s2 = 1 for all s in S. The couple (W,S) is usually called a Coxeter system. For

example, the braid groups correspond to the case mσi,σj
=
3, if |i− j| = 1

2, otherwise
.

A Coxeter system (W,S) can be represented by a so-called Dynkyn diagram as follows:
each vertex is a generator, and each edge between vertices si and sj is labeled by msi,sj

,
where for simplicity m = 2 is represented as no edge and m = 3 is represented as an
unlabeled edge. So the Coxeter group associated to S = {s1, s2, s3} with ms1,s2 = 3 and
ms1,s3 = ms2,s3 = 2 is

⟨s1, s2, s3 | s2
1 = s2

2 = s2
3 = 1, s1s2s1 = s2s1s2, s1s3 = s3s1, s2s3 = s3s2⟩
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and corresponds to the diagram

A Coxeter group is called irreducible when its Dynkyn diagram is connected. Finite
irreducible Coxeter groups have been classified in [Cox35, Theorem ‡]. This classification
involves 4 infinite families (among which the braid groups) and 6 exceptional groups. We
present the classification in the following Figure 4, where the parameters of the infinite
families A,B,D, I2 correspond to the number of vertices.

Name Diagram
An (n ≥ 1)
Bn = Cn (n ≥ 2) 4

Dn (n ≥ 4)

E6

E7

E8

F4 4

G2 6

H2 5

H3 5

H4 5

I2(p) (p ≥ 7) p

Figure 4: Classification of finite irreducible Coxeter groups

For the particular cases of finite Coxeter groups, and their associated Artin groups
which are called of spherical type, many properties are known, which will be the point of
the next subsection of their Garside theory, as most of those properties can be deduced
from the existence of a longest element ([Deh+15; DP99]). One easy thing to observe,
which relates to the geometric origin of these groups is their geometric representation as
reflection groups [Bou07; Tit74]:

Let S be a finite Coxeter system with finite Coxeter group W . Consider the finite
dimensional vector space V = RS, with basis (es)s∈S. We define a symmetric bilinear
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form on V by setting
B(es, et) = − cos( π

ms,t

),

and then for each s in S we define a reflection on V by

σs(x) = x− 2B(es, x)es.

The representation ρ obtained from these reflections happens to be faithful, and is called
the geometric representation of a Coxeter group, allowing for a geometric approach to
Coxeter groups, via reflection groups (finite groups generated by reflections of an euclidean
space).

Explicitly, we equip the dual space V ∗ with the contragradient action of W such that,
for all (x, y) in (V ∗ × V ), ⟨σs(x), y⟩ = ⟨x, σs(y)⟩, the hyperplanes Ms = {x ∈ V ∗ |
⟨x, es⟩ = 0} and their orbits by W are called walls. The cone defined by C = {x ∈ V ∗ |
∀s ∈ S, ⟨x, es⟩ > 0} is called the fundamental chamber and its W -orbits the chambers of
V .

es

et

Mt

Ms

C

sC

stC

tC

tsC

stsC = tstC

σs

σt

Figure 5: Walls and chambers for A2 = S3 = ⟨s, t | s2 = t2 = 1, sts = tst⟩

In Figure 5, we chose two unit vectors (es and et) separated by an angle of π
ms,t

= π
3

and their corresponding hyperplanes Ms and Mt. Then C is the fundamental chamber,
between the positive part of these two walls. To go from C to another chamber, we can
reflect through one wall to attain sC or tC, for our example say we chose sC. Then, one
can again do a reflection with another wall of the chamber: choosing s will result in going
back to C, will choosing t will lead to tsC. The relation sts = tst then corresponds to
the fact that stsC = tstC obtained step-by-step (reflection-by-reflection).

Garside theory
The conjugacy problem (deciding when two words represent conjugate elements in a
group) for the braid groups was solved by Garside in [Gar69]. His approach was gen-
eralized to spherical type Artin–Tits groups, that is for which the associated Coxeter
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group is finite, by Brieskorn–Saito in [BS72] and Deligne in [Del72]. In [DP99] Dehornoy
and Paris introduced the definition of a Garside group, and many algorithmical and combi-
natorial properties were deduced from this (solution to the word and conjugacy problems,
biautomaticity, normal forms, etc.).

The fundamental aspect of this structure on Artin–Tits groups is the existence of a
longest element in the Coxeter group; for instance, for the type An where W = Sn+1 is
generated by adjacent transpositions, the longest element is

w0 =
(

1 2 . . . n− 1 n
n n− 1 . . . 2 1

)
= ΠnΠn−1 . . .Π1

where Πk = s1s2 . . . sk with si =
(
i i+ 1

)
.

This special element, when lifted to the Artin–Tits group is called a Garside element,
usually denoted ∆, and is seen as the least common multiple of the generators, which leads
to numerous interesting properties: it induces an automorphism (from s∆ = ∆τ(s)), the
Artin–Tits group is the group of fractions of the Artin–Tits monoid (in particular the
monoid is cancellative and embeds in the group).

We say that a word in S of length r is reduced in W if it is a minimal length decompo-
sition of the element it represents ((s) is always reduced, (s, s, t) is not because sst = t).
Another fundamental property of finite Coxeter groups is the so-called Exchange lemma:
consider a reduced word (s1, . . . , sr) and an element s in S, then either (s, s1, . . . , sr) is
reduced or s1 . . . sr = ss1 . . . ŝi . . . sr in W for some removed element si).

In [Deh+15] a large review of current knowledge of Garside groups, and a generaliza-
tion to Garside categories is made.

Iwahori-Hecke algebras
For a given Coxeter system (W,S) and a commutative ring R, one has the group algebra
of W but also the group algebra of the Artin–Tits groups A associated to (W,S). The
surjection A ↠ W then extends to an algebra morphism R[A] ↠ R[W ] where R is
the chosen coefficient ring. The aim of a Iwahori-Hecke algebra ([GP00; Bou07]) is to
deform the finite-dimensional algebra R[W ] = R[A]/⟨s2 = 1⟩ (whenever W is finite) to
retain some information of the quotient: to do so, in the generic version, a parameter
q is introduced. Consider a quotient of R[q±1][A] by deforming the relation s2 = 1 ⇔
(s− 1)(s + 1) = 0 to (s− q)(s + 1) = 0 ⇔ s2 = (q − 1)s + q. Thus the so-called generic
Iwahori-Hecke algebra associated to W is defined as ([GP00])

Hq(W ) = R[q±1]⟨Ts, s ∈ S | TsTtTs . . .︸ ︷︷ ︸
ms,t

= TtTsTt . . .︸ ︷︷ ︸
ms,t

, T 2
s = (q − 1)Ts + q⟩.

For instance, in the braids groups, this allows to work in something similar toR[Sn] (which
is finite) while the parameter q "keeps track" of the information lost when quotienting;
this leads to the definition of some invariants of knots (which are tightly related to braids,
see [Ale23]) by Jones in [Jon87].

For this, consider the Iwahori-Hecke algebra Hn of Sn over a field with two variables
k(q′, q′′) with the parameter q = − q′

q′′ , and with the new generating family given by
s̃ = −q′′s, it follows that s̃2 = Ss̃ − P where S = q′ + q′′ and P = q′q′′. Then, there
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exists a unique Markov Trace over ⊔n≥1Hn ([Dig]), that is a collection of linear forms
τn : Hn → R such that τn+1(s̃nh) = τn(h) for all h ∈ Hn and with sn the last generator of
Sn+1, and τ1(1) = 1. The Alexander polynomial ([Ale23]) is obtained by setting q′ = t

1
2

and q′′ = −t− 1
2 , the Jones polynomial by setting q′ = t

3
2 and q′′ = −t 1

2 ([Jon87]), and
their generalization the HOMFLY polynomial R[x, t] by setting S = tx and P = −t2
([Fre+85]).

Hecke algebras have a strong importance for the study of representation of algebraic
groups. Let us focus on G = GLn(Fq), the general linear group of degree n over a finite
field with q = pk elements. Consider the Borel subgroup B ⊂ G of upper triangular
matrices, it follows from Bruhat decomposition that G = ⊔σ∈SnBσB ([Bou07]. It was
shown by Iwahori that EndFq [G](Fq[G/B]) = Hn(Sn) ([Iwa64]). This was then used by
Lusztig in his book [Lus16] to construct all irreducible characters of G.

Some essential properties of an Iwahori-Hecke algebra H are the following: dim H =
dim R[W ] = |W |, the generators are invertible, under a suitable extension of R the algebra
is semi-simple.

In particular, for instance over a large enough field K (such as C(√q), [GP00]), we
have a bijection between the irreducible characters of the algebras KH = K ⊗ H and
C[W ].

The Yang–Baxter equation

A physical model

First occurrences of the Yang–Baxter equation were in physics, specifically its name comes
from the work of Yang on quantum mechanic ([Yan67]) and Baxter on statistical mechanic
([Bax72]), an extensive review of its origin and occurrences in different domains of physics
can be found in [PA06; Jim89]. We provide one example of how the equation appears:
square lattice vertex models, more specifically the 6- and 8-vertex models, the latter being
the one studied by Baxter. For details, the reader can refer to [Eck19].

First consider a square lattice, representing the crystal structure of ice (H2O), where
each vertex represents an oxygen atom, and has in its neighborhood two hydrogen atoms,
leading to 6 possible local configurations as represented in the following, where the center
is the Oxygen atom and the two • represent the Hydrogen atoms.

I II III IV V VI

A common alternative representation is with arrows to the vertex, where incoming
arrows correspond to the presence of Hydrogen. The ice rule then being that there must
be exactly 2 incoming arrows representing the two Hydrogen atoms.

12



I II III IV V VI
Figure 6: The six configurations of the ice-type model

This model was then generalized to the 8-vertex model, which Baxter studied, by
relaxing the ice rule to having an even number of incoming arrows to each vertex, thus
allowing two extra configurations:

VII VIII
Figure 7: The two extra configurations of the 8-vertex model

Up to arrow reversing, those configurations can be grouped in 4 groups of two in the
order they are written (I and II, III and IV, V and VI, VII and VIII), and those are named
respectively a, b, c and d.

However, it is more convenient for mathematical purposes to identify an arrow with

a sign as follows:
↑= +1 =→
↓= −1 =←

, and we label a vertex with α, α′, γ, γ′ in {−,+} in the

following way:

α′

γ γ′

α

The ice rule, i.e. that every vertex has exactly two incoming edges, can be checked to
being equivalent to α + γ = α′ + γ′.

Then, a lattice is said to be valid if it locally corresponds to one of the 8 allowed
configurations. So two configurations can be joined together when the sign where they
are joined matched (for instance, to join two configurations from left to right, γ′ of the
left one must equal γ of the right one).

Now, to each of the 8 configurations we can associate an energy ϵj (j ∈ {I, . . . ,VIII})
and a corresponding positive number vj = e−βϵj , representing its statistical weight, where
β is the inverse of the temperature of the system. If we have nj vertices of configuration
j ∈ {I, . . . ,VIII} in a finite lattice (with the conditions above), the total energy is given
by E =

8∑
j=1

njϵj.

13



γ12 γ′
12 = γ′

22
γ′

22

γ11
γ′

11 = γ′
21 γ′

21

α12

α
11

=
α

′ 12

α′
11

α12

α
11

=
α

′ 12

α′
11

Figure 8: Conditions for a valid 2× 2 lattice

The main interest, the partition function, is then defined as a sum over valid lattices

Z =
∑

valid lattices
e−βE .

For a given configuration, we denote Rα′
α (γ, γ′) both the configuration itself and the as-

sociated statistical weight, as the context will be clear to determine which one is involved.
Then, two vertex configurations Rα′

1
α1(γ1, γ

′
1) and Rα′

2
α2(γ2, γ

′
2) can be put next to each other,

say left to right (resp. top to bottom), if γ′
1 = γ2 (resp. α1 = α′

2). If we consider the
statistical weight of a row with N configurations, with the cylindrical condition γ1 = γ′

N ,
we find it is equal to

T(α),(α′) =
∑

γ1,...,γN =±
Rα′

1
α1(γ1, γ2)Rα′

2
α2(γ2, γ3) · · ·Rα′

N
αN

(γN , γ1).

which only depends on (α) = (α1, . . . , αN) and (α′) = (α′
1, . . . , α

′
N).

As Rα′
i

αi(γi, γ′
i) is the statistical weight of a local configuration, we have that the statis-

tical weight of a row is given by Rα′
1

α1(γ1, γ2) · · ·R
α′

N
αN (γN , γ1). Thus T(α),(α′) is the partition

function of a single row.
We then put each of the weights T(α),(α′) inside a 2N × 2N matrix with row (resp.

columns) indexed by the possible values of α1, . . . , αN (resp. with primes), denoted T and
called the transfer matrix.

Then, if we stack M rows on top of each other with the compatibility conditions and
the toroidal condition α1 = α′

M , we obtain obtain another expression for the partition
function as

Z =
∑

(α1),...,(αM )
T(α1),(α2)T(α2),(α3) . . . T(αN ),(α1).

This expression of Z is also exactly the trace of Tm. Thus, to understand Z, we can try
to find the eigenvalues of T .

In the most general case, there is 16 possible configurations (two states for each edge),
and some have been studied (we still refer to [Eck19] for more details and references).
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This leads to the definition of the R-matrix, a 4 × 4 matrix with coefficients Rα′
α (γ, γ′),

where the rows (resp. columns) are indexed by (α, γ) (resp. with primes) in the order
1 = (+,+), 2 = (+,−), 3 = (−,+) and 4 = (−,−). For the 8-vertex model considered
by Baxter, by assuming all the symmetries by arrows reversal (for instance identifying
I= R+,+(+,+) and II= R−,−(−,−)), the R-matrix is given by

R8v =


a 0 0 d
0 b c 0
0 c d 0
d 0 0 a


and for the 6-vertex model of ice, we add that d = 0. To highlight the symmetries
of such a matrix, it is common and convenient to make use of the Pauli matrices (and
adding the identity) to write R8v = ∑4

j=1 wjσj ⊗ σj, where the coefficients wj can be
deduced by solving an easy linear system of 4 equations (their values do not matter for
this explanation); and in general we write R =

4∑
i,j=1

wijσi ⊗ σj by solving a linear system
of 16 equations.

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, σ4 = I2 =

(
1 0
0 1

)
.

Figure 9: The 3 Pauli matrices and the identity

For the 6-vertex model, the diagonalization was obtained using the "Bethe ansatz",
but this method cannot be extended to the 8-vertex model (see [Eck19; Bax85]) and
Baxter had to introduce a new approach, which leads to one of the first occurrences of
the Yang–Baxter equation. Baxter’s idea, extracted from Bethe ansatz, is to study the
commutativity of transfer matrices: that is, given any two sets of Boltzmann weights vj
and v′

j for a N ×M lattice, understanding when their respective transfer matrices T and
T ′ commute. He showed how, under the assumption of their commutativity (and some
extra others), any transfer matrix can be diagonalized. This method can be applied in
a more general context, although then solving the Yang–Baxter equation is not always
possible:

Now consider the so-called monodrony matrix, obtained like the transfer matrix of a
row but without the cylindrical conditions:

T = T(α),(α′)(γ, γ′) =
∑

γ2,...,γN =±
Rα′

1
α1(γ, γ2)Rα′

2
α2(γ2, γ3) . . . Rα′

N
αN

(γN , γ′)

and regarded as a 2× 2 matrix with coefficients the four 2N × 2N matrices T (γ, γ′). The
transfer matrix can then be re-obtained as T = Tr(T ) = T (+,+) + T (−,−) (the other
two coefficients don’t satisfy the toroidal conditions). This monodrony matrix, although
it looks more complicated than the transfer matrix, admits a nice "local description":

Recall that the 4 × 4 R-matrix can be expressed as R =
4∑

i,j=1
wijσi ⊗ σj using the

Pauli matrices. For all 1 ≤ n ≤ N , we define the 2N+1 × 2N+1 L-operator by Ln =
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4∑
i,j=1

wijσi ⊗ σ(n)
j , where σ(n)

j =
N︷ ︸︸ ︷

I2 ⊗ I2 ⊗ · · · ⊗ σj︸︷︷︸
n

⊗I2 ⊗ · · · ⊗ I2. These matrices can be

seen as a local version of the R-matrix, and one can show that T = L1L2 . . . LN .
Now the commutativity of T = Tr(T ) and T ′ = Tr(T ′) can be obtained from the

existence of an invertible 4 × 4 matrix M such that M(T ⊗ T ′) = (T ′ ⊗ T )M ; indeed,
we would have TT ′ = Tr(T )Tr(T ′) = Tr(T ⊗ T ′) = Tr(M−1(T ′ ⊗ T )M) = Tr(T ′ ⊗ T ) =
Tr(T ′)Tr(T ) = T ′T . From examples, it is expected that in fact M can be obtained from
another R-matrix, say R′′ for a third set of Boltzmann weights v′′

j , by taking

M = R̃′′ = PR′′ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

R.

The equation R̃′′(T ⊗ T ′) = (T ′ ⊗ T )R̃′′ can be written locally as R̃′′(Ln ⊗ L′
n) = (L′

n ⊗
Ln)R̃′′ or with R-matrices R̃′′(R ⊗ R′) = (R′ ⊗ R)R̃′′. Explicitly, if we denote for clarity
R = R(w), R′ = R(w′) and R′′ = R(w′′), this expands as

∑
α′′,β′′,γ′′

Rα′

α′′(γ, γ′′)(w)Rβ′

β′′(γ′′, γ′)(w′)Rα′′

α (β, β′′)(w′′) =

∑
α′′,β′′,γ′′

Rα′

α′′(β′′, β′)(w′′)Rβ′′

β (γ, γ′′)(w′)Rα′′

α (γ′′, γ′)(w).

Going back to the 8 (or 6) vertex case, each R-matrix can be seen as an operator
V ⊗ V → V ⊗ V where V = (↑ C) ⊕ (→ C), and if instead we consider the operator
Rij : V ⊗ V ⊗ V → V ⊗ V ⊗ V , the equation R̃′′(R⊗R′) = (R′ ⊗R)R̃′′ can be rewritten
as

R′′
12R13R

′
23 = R′

23R13R
′′
12

It can moreover be shown that, in those the 6-vertex case, this equation can be simplified
by the introduction of "spectral parameters" u1, u2 and u3 as

R12(u1 − u2)R13(u1 − u3)R23(u2 − u3) = R23(u2 − u3)R13(u1 − u3)R12(u1 − u2)

where the 3 original R-matrices have been reparameterized as operators (αC⊕ γC)⊗2 →
(α′C⊕ γ′C)⊗2. Forgetting the parameters, we arrive at the "quantum Yang–Baxter equa-
tion" R12R13R23 = R23R13R12; if we define τ : V⊗ → V ⊗ V by τ(x⊗ y) = y ⊗ x, then R
is a solution of the quantum Yang–Baxter equation if and only if τR is a solution of the
"Yang–Baxter equation" R12R23R12 = R23R12R23 (often also written R1R2R1 = R2R1R2,
resembling the braid equation).

For the 8 vertex case, the solution was obtained by Baxter. In general, a solution does
not necessarily exist. This is for instance the case of the 16-vertex model ([Eck19]). Thus,
it is enough to find solutions to the Yang–Baxter equation (in its appropriate form) to
obtain the partition function of the model, but this problem is in general very difficult.
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The mathematical approach
In 1992 Drinfeld ([Dri92]) posed the question of classifying the "easier" case of set-
theoretical solutions to the (quantum) Yang–Baxter equation, that is when considering
R-matrices that leave invariant a basis of the vector space V . Explicitly, they are given
by pairs (X, r) where X is a set, r : X×X → X×X a bijection satisfying r1r2r1 = r2r1r2
where ri acts on the i and i + 1 component of X × X × X. In [ESS99], the authors
propose to study solutions which are involutive (r2 = idX×X) and non-degenerate (if
r(x, y) = (λx(y), ρy(x)) then for any x ∈ X, λx and ρx are bijective), we will simply call
those "solutions".

r

x y

λx(y)ρy(x)

,

r

r

r

=

r

r

r

,
r

r
= .

Figure 10: Representation of properties of solutions

Since then, many advances have been made on this question and objects introduced:
structure group ([ESS99]), I-structure ([GV98]), etc. Many equivalent objects are known,
but in particular here we are interested in cycle sets, introduced by Rump ([Rum05]).
Dehornoy ([Deh15]) then studied the structure group (from cycle sets) seen from a Garside
perspective (divisibility, word problem, ...),

In particular, Dehornoy defined an integer associated to a solution, which we call
Dehornoy’s class and usually denote d, which is to put in parallel to the number 2 for
spherical Artin–Tits groups whose Coxeter groups are defined by quotienting by s2 = 1
for all generators s. In this sense, quotienting the structure group by a sort of "twisted
d-th power" of every generator yields a quotient, called a germ, playing a role similar to
Coxeter groups.

Moreover, Dehornoy introduced a faithful representation of the structure group, and
this representation specializes to a faithful representation of the germ. This representa-
tion of the structure group involves monomial matrices (where each row and column has
a unique non-zero coefficient), allowing for the easy computer implementation of algorith-
mical tools to study the germ (a finite matrix group).

Thesis’ content
The principal idea of this Thesis is to follow on Dehornoy’s 2015 article ([Deh15]), where
he studied structure group of set-theoretical solutions to the Yang–Baxter equation with
technics coming from Artin–Tits groups and Coxeter groups. Most importantly, he con-
structed a quotient of the structure group that plays a role similar to the one finite
Coxeter groups play for their associated Artin–Tits group of spherical type. In this sense,
we will try to provide a better understanding of this "Coxeter-like" quotient, as well as
highlighting the similarities and differences with finite Coxeter groups.
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In the first section of this thesis, we will introduce the basic objects that we will
study: set-theoretical solutions, cycle sets, braces. Our main interest will be a monomial
representation introduced by Dehornoy, which we will use as a way to give a combinatorial
and algorithmical approach to well-known results, such as the I-structure. We also explicit
the equivalences between Dehornoy’s calculus, brace theory and our monomial matrix
approach.

The second section has three interests: Firstly, we answer a question of Dehornoy’s on
retrieving the Garside structure without a theorem of Rump, and then retrieving Rump’s
theorem. Both the Garside structure and Rump’s theorem are obtained independently
just using the I-structure. We then focus on Dehornoy’s construction of the Coxeter-like
groups, obtained from associating an integer (Dehornoy’s class) to every solution. On the
one hand, we focus on bounding the integer, with conjectures and partial results. On
the other hand, we study a way to decompose the Coxeter-like group as a Zappa–Szép
product of its Sylows, with the aim to try to reduce the classification problem to more
"elementary" solutions (those were Dehornoy’s class is a power of a prime). The main
statements of this section are the followings conjecture and theorem, where we call a
"finite involutive non-degenerate solution of the Yang–Baxter equation" just a "solution".

Conjecture (2.4.0.8). Let (X, r) be a solution of size n. Then the Dehornoy class d
of (X, r) is bounded above by the “maximum of different products of partitions of n into
distinct parts” and the bound is minimal, i.e.

d ≤ max
({

k∏
i=1

ni

∣∣∣∣∣k ∈ N, 1 ≤ n1 < · · · < nk, n1 + · · ·+ nk = n

})
.

In Proposition 2.4.0.9, we prove the conjecture in a particular case: when (X, r) is
square-free (i.e. r(x, x) = (x, x) for all x in X) and has abelian permutation group.

Theorem (2.5.0.13). Any solution can be constructed from the Zappa–Szép product of the
germs of solutions whose Dehornoy classes are powers of primes.

Taking decomposability into account (writing a solution as union of solutions), one
can consider that some "basic" cycle sets are the ones whose size and Dehornoy’s class are
powers of the same prime.

In the third section, we study the relation between the indecomposability of a solution
and the irreducibility of the monomial representations defined by Dehornoy. To avoid
a problem on particular values of Dehornoy’s class, we study a larger germ obtained by
considering a multiple of Dehornoy class ld and call it the l-germ. Moreover, we show that
the monomial representations of indecomposable cycle sets are induced by a character of
an explicit subgroup (the stabilizer of any element of X). The main result is the following:

Theorem (Proposition 3.1.0.1). Consider a integer l > 1 and let (X, r) be a solution.
Then the following are equivalent:

(i) (X, r) is indecomposable

(ii) The monomial representation of the structure group of (X, r) is irreducible

(iii) The monomial representation of the l-germ of (X, r) is irreducible
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For l = 1, we show (Theorem 3.2.0.7) that if (X, r) is indecomposable and d ̸∈ {2, 6}
then the monomial representation of the germ is irreducible.

In the fourth section, we define and study Hecke algebras for structure groups of
solutions, still in parallel to finite Coxeter groups. The general definition, although less
easy to manipulate than the Coxeter one, allows for many parameters: for instance, we
are not limited by quadratic relations. Moreover, our definition happens to be slightly
different from the generic Iwahori-Hecke approach to Coxeter groups. We explain why this
difference occurs and where our definition comes from. We then study some properties of
this Hecke algebra of solutions. As in the third section, our approach involves the l-germ
of a solution (with l > 1), obtained by taking a multiple of Dehornoy’s class.

We summarize the results in the following example:

Example (Example 4.2.0.11). Let (X, r) be the solution where X = {x1, . . . , xn} and
r(xi, xj) = (xj+1, xi−1) where the indices are taken modulo n. This solution has De-
hornoy’s class d = n. Denote G the structure group of (X, r) and G2 its germ associated
to 2n (two times Dehornoy’s class). Then, for any integral domain R, define the following
R[q±1]-algebra:

H = R[q±1][G]
/〈(

x
[n]
i

)2
= (q − 1) · x[n]

i + q, 1 ≤ i ≤ n
〉

where x[n]
i = xixi+1 · · ·xi+n−1 with indices taken modulo n.

Then the followings hold:

• (Theorem 4.2.0.8) H is a free R[q±1]-module with basis indexed by G2. In particular,
H has rank (2n)n.

• (Corollary 4.3.0.4) If Tg denotes the generator of H associated to an element g of
G2, then Tg is invertible.

• (Theorem 4.3.0.5) The anti-involution R[q±1]→ R[q±1] that sends q to q−1 extends
to a well-defined anti-involution of H that sends Tg to T−1

g for any g ∈ G2.

• (Corollary 4.4.0.11) If R = C then C(q)⊗H is semi-simple, and there is bijection
between the irreducible characters of C(q) ⊗ H and the irreducible characters of
C[G2].
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CHAPTER 1

Set-theoretical solutions to the Yang–Baxter equation

The goal of this section is to introduce the different approaches to study set-theoretical
solutions to the Yang–Baxter equation, and also to retrieve well known results about their
structure groups.

More precisely, we will define the objects to be studied: set-theoretical solutions to the
Yang–Baxter equation ([Dri92; ESS99]), cycle sets ([Rum05; Deh15]) and braces ([Rum07;
Ced18]). One of our main objects for this thesis is the monomial representation of struc-
ture groups introduced by Dehornoy ([Deh15]), which he obtained after retrieving the
I-structure. We instead start from the representation to retrieve the I-structure, and will
use this approach in the next Section (Section 2) to answer a question of Dehornoy. We
also use the monomial representation to encompass both Dehornoy’s calculus and Brace
theory.

As the fact that structure groups are braces follows from the I-structure, we will start
without the brace structure. Thus the plan for this section is the following: define our
main objects, introduce Dehornoy’s calculus, use a monomial representation to under-
stand Dehornoy’s calculus and deduce the I-structure, finally define braces and give their
correspondance in terms of Dehornoy’s calculus.

1.1 Yang–Baxter equation
As mentioned in the introduction, the Yang–Baxter equation (usually shortened YBE)
is a fundamental equation on linear maps occurring in many topics in physics. In 1992,
Drinfeld posed the question of restricting to linear maps that stabilize a basis, thus trying
to find "set-theoretical solutions". This problem have been shown to be very difficult and
many different approaches have been made, for which we will try to give an overview.
A seminal paper by Etingof, Schedler and Solovier ([ESS99]), restricting to particular
cases of such solutions and defining some group structures, allowed for many advances
leading to some results in classification for special cases (see for instance [DPT24; CJO22;
CPR20]).
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Chapter 1. Set-theoretical solutions to the Yang–Baxter equation

Definition 1.1.0.1 ([Dri92]). A set-theoretical solution to the Yang–Baxter equation is a
couple (X, r) with X a set and r : X ×X → X ×X a bijection such that, on X ×X ×X
we have

r1r2r1 = r2r1r2

where r1 = (r × id) and r2 = (id× r).

The main example that was known by Drinfeld, which he attributed to Lyubashenko
is the following:

Example 1.1.0.2. Let X be a set, and consider two maps f, g : X → X. Then r : X ×
X → X×X defined by r(x, y) = (f(y), g(x)) is a solution if and only if fg = gf . Indeed,
we have, for any x, y, z ∈ X,

r1r2r1(x, y, z) = r1r2(f(y), g(x), z) = r1(f(y), f(z), g2(x)) = (f 2(z), g(f(y)), g2(x))

and

r2r1r2(x, y, z) = r2r1(x, f(z), g(y)) = r2(f 2(z), g(x), g(y)) = (f 2(z), f(g(y)), g2(x)).

Which are equal if and only if f(g(y)) = g(f(y)) for all y in X.

r

r

r

=

r

r

r

Figure 1.1: Graphical representation of the YBE

Finding all solutions of a given size is a very difficult problems, as a very naive and
inefficient approach would try, for set-theoretical solutions of size |X| = n, all (n2)! pos-
sibilities. But having a better understanding of the behaviour of set-theoretical solutions
would certainly help progress on the more general case in physics where we instead study
couples (V,R) where V is a vector space and R : V ⊗ V → V ⊗ V is a linear map.

Definition 1.1.0.3. A morphism of solutions (X, r) → (Y, s) is a map f : X → Y such
that (f ×f)r = s(f ×f). If such a map is bijective, then we say that it is an isomorphism
of solutions.

Example 1.1.0.4. Given any solution (X, r) with |X| = n, for any permutation σ ∈ SX

the solution defined by (X, rσ) where rσ = (σ × σ)r(σ−1 × σ−1) is (possibly trivially)
isomorphic to (X, r). Indeed, if we take f = σ, then we have

rσ(σ × σ) = (σ × σ)r(σ−1 × σ−1)(σ × σ) = (σ × σ)r.
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1.1. Yang–Baxter equation

Drinfeld originally mentioned the restriction to involutive solutions, that is when r2 =
idX×X , which greatly simplifies the problem. Indeed, if we write r(x, y) = (σx(y), τy(x)),
the involutivity is equivalent to σx(y) = τ−1

τy(x)(y), meaning that only "one side" of the map r
defines the solution. Moreover, Etingof–Schedler–Soloviev ([ESS99]) proposed to restrict
to non-degenerate solutions: when σx and τx are bijective maps for all x in X. If only one
of those is required to be bijective, the solution is called left non-degenerate if it’s σx that
is bijective, and right non-degenerate if it’s τx. Rump showed that, for finite involutive
solutions, left and right non-degeneracy are equivalent ([Rum05, Theorem 2]), and we
provide an alternative proof of this fact and its implications in Section 2.3 (answering a
question of Dehornoy in [Deh17, Questions Slide 18] to re-obtain his results of [Deh15]
without Rump’s theorem).
Problem 1.1.0.5 ([Dri92, Theorem 9]). Classify all (finite) set-theoretical solutions to
the Yang–Baxter equation (up to isomorphism).

What about involutive? Non-degenerate? Both?
All involutive non-degenerate solutions of size up to 8 were first obtained in [ESS99],

and then [AMV22] improved the classification up to size 10.
To approach this question, the notion of a structure group was introduced to try to

shift the problem from combinatorics to algebra.
Definition 1.1.0.6 ([ESS99]). If (X, r) is a solution we define its structure group (resp.
monoid) by the presentation

⟨X | xy = x′y′ where r(x, y) = (x′, y′)⟩.

Example 1.1.0.7. The trivial solution ({a, b}, r(x, y) = (y, x)) has structure group given
by ⟨a, b | ab = ba⟩ ≃ Z2.

The solution ({a, b}, r(x, y) = (σ(y), σ(x)) where σ exchanges a and b, explicitly given

as
r(a, b) = (a, b), r(a, a) = (b, b)
r(b, a) = (b, a), r(b, b) = (a, a)

, has structure group ⟨a, b | a2 = b2⟩.

Those are the only two solutions of size 2 that are involutive and non-degenerate, as
the identity of X2 is degenerate (r(x, y) = (x, y) implies σxy = x).

Many properties and constructions have been obtained for the structure group (see
for instance [ESS99; Rum07; Cho10; GV98]), and we aim here to retrieve some of them
with combinatorial and algorithmical technics inspired by [Deh15].

From now on, we will say "a solution" to mean a finite non-degenerate involutive
set-theoretical solution of the Yang–Baxter equation.
Remark 1.1.0.8. In the mathematical literature, the Quantum Yang–Baxter equation
(QYBE) also appears ([Yan67; ESS99]), and is used almost interchangeably with the
classical case. This equation can be written as

r12r13r23 = r23r13r12

where rij acts on the i and j components of X ×X ×X.
It is easily seen that one can go from a classical to a quantum solution by composing

with the flip τ(x, y) = (y, x), and vice versa, that is: r is a solution to the YBE if and
only if τr is a solution to the QYBE. Moreover, this equivalence preserves finiteness,
involutivity and non-degeneracy.
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Chapter 1. Set-theoretical solutions to the Yang–Baxter equation

1.2 Cycle sets
Rump introduced in [Rum05] a new object, which he calls cycle sets (and Dehornoy will
call "Right-cyclic system") to study solutions. These have the advantage of having a "sim-
pler" and shorter condition compared to the one obtained by expanding the Yang–Baxter
equation with r(x, y) = (σx(y), τy(x)) which is quite heavy. The unique condition defining
a cycle set comes from, first using that r is involutive to relate σx(y) and τy(x), then using
clever changes of variables to reduce the 3 conditions to 1 (see [Rum05; Bha+21]).

Definition 1.2.0.1 ([Rum05]). A cycle set is a set S endowed with a binary operation
∗ : S×S → S such that for all s in S the map ψ(s) : t 7→ s∗ t is bijective and for all s, t, u
in S:

(s ∗ t) ∗ (s ∗ u) = (t ∗ s) ∗ (t ∗ u). (1.1)

When S is finite of size n, ψ(s) can be identified with a permutation in Sn.
If the diagonal map is the identity (i.e. for all s ∈ S, s∗s = s), S is called square-free.

Analogously to set-theoretical solutions, we have a notion of morphism:

Definition 1.2.0.2. A morphism of cycle sets (S, ∗) → (T, ⋆) is a map f : S → T such
that, for any s1, s2 in S, f(s1 ∗ s2) = f(s1) ⋆ f(s2).

From now, and all along this thesis, we fix a cycle set (S, ∗).
As for solutions, we associate to a cycle set a structure group, and a structure monoid,

with quadratic relations as follows:

Definition 1.2.0.3 ([Rum05]). The group GS associated with (S, ∗) is defined by the
presentation:

GS := ⟨S | s(s ∗ t) = t(t ∗ s), ∀s ̸= t ∈ S⟩ . (1.2)

and called the structure group associated to (S, ∗). Similarly, we define the structure
monoid MS associated to (S, ∗) by the presentation:

MS := ⟨S | s(s ∗ t) = t(t ∗ s), ∀s ̸= t ∈ S⟩+ .

They will be called the structure group (resp. monoid) of S.

Example 1.2.0.4. Let S = {s1, . . . , sn}, σ = (12 . . . n) ∈ Sn. The operation si∗sj = sσ(j)
makes S into a cycle set, as for all s, t in S we have (s∗t)∗(s∗sj) = sσ2(j) = (t∗s)∗(t∗sj).

The structure group of S then has generators s1, . . . , sn and relations sisσ(j) = sjsσ(i)
(which is trivial for i = j).

In particular, for n = 2 we find G = ⟨s, t | s2 = t2⟩.

When the context is clear, we will write G (resp. M) for GS (resp. MS), and call it
the structure group associated to S (omitting the ∗).

We also assume S to be finite and fix an enumeration S = {s1, . . . , sn}.

Remark 1.2.0.5. By the definition of ψ : S → Sn we have that si ∗ sj = sψ(si)(j). For
simplicity we will also write sψ(si)(j) as ψ(si)(sj), by the identification between Sn and
SS.
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1.3. Dehornoy’s calculus

Obviously, the interest of this object is that it provides an alternative definition of a
solution:

Theorem 1.2.0.6 ([Rum05]). There is a bijective correspondence between finite cycle sets
and finite involutive left non-degenerate solutions.

Moreover, this correspondence respects the definition of both structure groups.

Remark 1.2.0.7. The proof relies in a series of clever change of variables, which Rump
does not do in full details: the Yang–Baxter equation involves three identities, and he
focuses on one, only mentioning that the last two are equivalent, which in fact requires a
bit of work. A complete proof of this statement can be found in [Bha+21, Theorem 3.2.2].

1.3 Dehornoy’s calculus
Recall that we fixed (S, ∗) a finite cycle set of size n with structure monoid (resp. group)
M (resp. G).

In the following, we introduce the basics of Dehornoy’s Calculus, which will be easily
understood in section 1.5 by directly looking at the representation introduced in the same
paper [Deh15]. We then use the representation to retrieve the well-known I-structure of
the structure monoid ([GV98]). The goal of this approach is to provide a combinatorial
and algorithmical way to work on words in the structure monoid by deriving relations
from the quadratic relations defining the monoid.

Although all these results are already stated in [Deh15], their provided proofs are
very technical, whereas using monomial matrices will greatly simplify proofs and allow
for more intuition while improving the readability (as the notations are lighter). The
representation approach, because it mixes the combinatorial techniques of Dehornoy with
some brace theory (see Section 1.6), leads to an easier computer implementation to study
structure groups.

Definition 1.3.0.1 ([Deh15]). For a positive integer k, we define inductively the formal
expression Ωk by Ω1(x1) = x1 and

Ωk(x1, . . . , xk) = Ωk−1(x1, . . . , xk−1) ∗ Ωk−1(x1, . . . , xk−2, xk). (1.3)

We then define another formal expression Πk by:

Πk(x1, . . . , xk) = Ω1(x1) · Ω2(x1, x2) · . . . · Ωk(x1, . . . , xk). (1.4)

For a cycle set S, Ωk(t1, . . . , tk) will be the evaluation in S of Ωk(x1, . . . , xk) at
(t1, . . . , tk) in Sk. Similarly, Πk(t1, . . . , tk) will be the evaluation in MS of Πk(t1, . . . , tk)
with the symbol · identified with the product of elements in MS.

Remark 1.3.0.2. For k = 1 we have Ω1(t) = t and Π1(t) = t. For k = 2 we have
Ω2(s, t) = s ∗ t and thus Π2(s, t) = s(s ∗ t), which correspond to one of the term of
the quadratic relations s(s ∗ t) = t(t ∗ s). Then for k ≥ 3, Πk can be thought of as a
generalization of the terms of the quadratic relations and Ωk; the point will be to use those
expressions to study words in the structure monoid via a "natural" way to apply relations,
and the following statements aim to highlight this.
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Chapter 1. Set-theoretical solutions to the Yang–Baxter equation

The best way to understand this calculus is to look at the Cayley graph of M :
First, the defining relations s(s ∗ t) = t(t ∗ s) can be written as Π2(s, t) = Π2(t, s), or

equivalently Ω1(s)Ω2(s, t) = Ω1(t)Ω2(t, s).

1 s

t

Ω1(t)

Ω1(s)

Π2(s, t)

Ω2(s, t)

Ω2(t, s)

Figure 1.2: Defining relations in the Cayley graph

One of the goal of Dehornoy’s calculus is to re-obtain the I-structure, which can be
stated as the fact that the Cayley graph of M is isometric to the one of Zn ([Deh15]),
which is a n dimensional cube lattice.

If we add a third generator u to the square above, we can then "complete" the faces of
(1, s, u) and (1, t, u).

1 s

t

u
Ω1(t)

Ω1(s)

Ω1(s)

Π2(s, t)

Ω2(s, t)

Ω2(t, s)

Π2(s, u)

Π2(t, u)

Ω2(s, u)

Ω2(t, u)

Ω2(u, t)

Ω2(u, s)

From there, we can again complete the faces (t,Π2(t, u),Π2(s, t)), (s,Π2(s, u),Π2(s, t)),
and (u,Π2(s, u),Π2(t, u)). The I-structure then corresponds to the fact that those 3 faces
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1.3. Dehornoy’s calculus

intersect at exactly one point, which is Π3(s, t, u) = Π3(t, u, s) = Π3(u, t, s). And De-
hornoy’s calculus allows for a combinatorial approach to this fact.

1 s

t

u

Ω1(t)

Ω1(s)

Ω1(s)

Π2(s, t)

Ω2(s, t)

Ω2(t, s)

Π2(s, u)

Π2(t, u)

Ω2(s, u)

Ω2(t, u)

Ω2(u, t)

Ω2(u, s)

Π3(s, t, u)

Π3(t, u, s)
Π3(u, s, t)

Ω3(s, u, t)

Ω3(s
, t,
u)Ω 3(

t,
s,
u)

Ω3(t, u, s)

Ω3(u, s, t)

Ω3(u, t, s)

Figure 1.3: Graphical representation of Dehornoy’s calculus

This cube will be seen again in Remark 2.1.0.13 (Figure 2.1), giving its name to Cube
condition that makes M a Garside monoid.

Remark that for any s, t, u in S, Ω3(s, t, u) = Ω2(s, t) ∗ Ω2(s, u) = (s ∗ t) ∗ (s ∗ u). By
the definition of a cycle set (Equation (1.1)), we then have Ω3(s, t, u) = (s ∗ t) ∗ (s ∗ u) =
(t ∗ s) ∗ (t ∗ u) = Ω(t, s, u). The following lemma generalizes this property. And this
corresponds, in the cube of Figure 1.3, to the fact that two edges Ω3 that start from the
same point, are identified.

Lemma 1.3.0.3 ([Deh15]). The element Ωk(t1, . . . , tk) of S is invariant by permutation
of the first k − 1 entries.

Proof. For k = 1 and k = 2 there is only the identity permutation and for k = 3 this is
precisely the condition the cycle set equation (1.1):

Ω3(s, t, u) = Ω2(s, t) ∗ Ω2(s, u) = (s ∗ t) ∗ (s ∗ u) = (t ∗ s) ∗ (t ∗ u) = Ω3(t, s, u).

Assume k ≥ 4 and proceed by induction. Since the transpositions σi =
(
i i+ 1

)
generate

Sk, we only have to look at σi with i ≤ k − 2. We have, by definition,

Ωk(t1, . . . , tk) = Ωk−1(t1, . . . , tk−1) ∗ Ωk−1(t1, . . . , tk−2, tk).

If i ̸= k − 2, By the induction hypothesis, both Ωk−1 occurring here are invariant by
σi as it does not affect the last term. Remains the case i = k − 2, for which we have:
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Chapter 1. Set-theoretical solutions to the Yang–Baxter equation

Ωk(t1, . . . , tσk−2(r−2), tσk−2(r−1), tk) = Ωk(t1, . . . , tk−3, tk−1, tk−2, tk)
= Ωk−1(t1, . . . , tk−3, tk−1, tk−2) ∗ Ωk−1(t1, . . . , tk−3, tk−1, tk) (Expanding)
= (Ωk−2(t1, . . . , tk−3, tk−1) ∗ Ωk−2(t1, . . . , tk−3, tk−2)) (Expanding)

∗ (Ωk−2(t1, . . . , tk−3, tk−1) ∗ Ωk−2(t1, . . . , tk−3, tk))
= (Ωk−2(t1, . . . , tk−3, tk−2) ∗ Ωk−2(t1, . . . , tk−3, tk−1)) (cycle set Equation)

∗ (Ωk−2(t1, . . . , tk−3, tk−2) ∗ Ωk−2(t1, . . . , tk−3, tk))
= Ωk−1(t1, . . . , tk−3, tk−2, tk−1) ∗ Ωk−1(t1, . . . , tk−3, tk−2, tk) (Collapsing)
= Ωk(t1, . . . , tk−2, tk−1, tk). (Collapsing)

The defining relations of the monoid can be written as Π2(s, t) = Π2(t, s), and the
next propositions generalizes this property. In particular, in Figure 1.3, this leads to the
cube "closing" , with the identification of the 3 top-right vertices.

Proposition 1.3.0.4. The element Πk(t1, . . . , tk) of MS is invariant by permutation of
the entries.

Proof. For k = 1 there is nothing to prove. For k = 2 we find Π2(t1, t2) = t1(t1 ∗ t2) which
is identified with t2(t2 ∗ t1) = Π2(t2, t1) by the defining relations of M in 1.2.

Now assume k ≥ 3 and, as in the proof of the previous lemma; restrict to the trans-
positions σi =

(
i i+ 1

)
with 1 ≤ i < k. Recall that, by definition

Πk(t1, . . . , tk) = Ω1(t1) · Ω2(t1, t2) · · · · · Ωk(t1, . . . , tk).

Clearly, the first i−1 terms remain unchanged by σi. And by the previous Lemma 1.3.0.3,
for k > i+ 1 the terms Ωk are invariant by σi. Thus we only have to look at the product:
Ωi(t1, . . . , ti−1, ti+1) · Ωi+1(t1, . . . , ti−1, ti+1, ti)
= Ωi(t1, . . . , ti−1, ti+1) · (Ωi(t1, . . . , ti−1, ti+1) ∗ Ωi(t1, . . . , ti−1, ti)) (Expanding)
= Ωi(t1, . . . , ti−1, ti) · (Ωi(t1, . . . , ti−1, t1) ∗ Ωi(t1, . . . , ti−1, ti+1)) (Relations of M)
= Ωi(t1, . . . , ti−1, ti) · Ωi+1(t1, . . . , ti−1, ti, ti+1). (Collapsing)

Which shows that Π is invariant by permutation of the entries.

Now having better understood the generalization of the relations, we will show that
any element can be seen as one those. Thus, applying relations to a word in M will be
seen as using the above properties. The idea of the following lemma is that, the Cayley
graph of M will always locally look like Figure 1.3. More precisely, if we start at any
vertex of the Cayley graph, we have the same cube up to a permutation of the labels.

Lemma 1.3.0.5. For any positive integer k, and any s, t1, . . . , tk in S, the map s 7→
Ωk+1(t1, . . . , tk, s) is bijective.

Proof. We proceed by induction: for k = 1 there is nothing to prove, for k = 2 this is part
of the definition of a cycle set. So consider k ≥ 2 and suppose that the property holds for
k − 1. We have

Ωk+1(t1, . . . , tk, s) = Ωk(t1, . . . , tk) ∗ Ωk(t1, . . . , tk−1, s),

by induction hypothesis s 7→ Ωt1,...,tk−1,s is bijective, and as Ωkt1, . . . , tk is an element of
S, its left action is bijective, which concludes the proof.
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1.3. Dehornoy’s calculus

From this lemma, we can deduce that any edge of the Cayley graph (equivalently any
element of M) can be reached by taking step-by-step Ω• from the origin, and this written
as a Π•.

Proposition 1.3.0.6. Let f be in M . Then there exists (t1, . . . , tk) in Sk such that
f = Πk(t1, . . . , tk).

In the sequel, for any f ∈M , by a "Π-expression of f" we mean choosing any (t1, . . . , tk)
in Sk such that f = Πk(t1, . . . , tk).

Proof. Take a decomposition of f as a product of elements of S:

f = t′1t
′
2 . . . t

′
k.

Let t1 = t′1, because S is a cycle set, the map t′ 7→ t1 ∗ t′ is bijective, so there exists t2
such that t′2 = t1 ∗ t2 (explicitly t2 = ψ(t1)−1(t′2)), i.e.:

f = t1(t1 ∗ t2)t′3 . . . t′k = Ω1(t1)Ω2(t1, t2)t′3 . . . t′k = Π2(t1, t2)t′3 . . . t′k.

We proceed by induction on k: suppose that we have t1, . . . , tk−1 such that t′1 . . . t′k−1 =
Πk−1(t1, . . . , tk−1), i.e. t′i = Ωk(t1, . . . , ti) for i < k. By the previous lemma the map
s 7→ Ωk(t1, . . . , tk−1, s) is bijective, so there exists tk such that

t′k = Ωk(t1, . . . , tk).

By induction, this gives the existence of t1, . . . , tk such that

f = Ω1(t1) . . .Ωk(t1, . . . , tk) = Πk(t1, . . . , tk).

Example 1.3.0.7. Take S = {s1, s2, s3, s4} with

ψ(s1) = (1234) ψ(s3) = (24)
ψ(s2) = (1432) ψ(s4) = (13).

And consider the element f = s1s2s3s4. We have ψ(s1)−1(s2) = s1, so f = s1(s1∗s1)s3s4 =
Π2(s1, s1)s3s4.

Similarly, ψ(s2)−1(s3) = s4, so s3 = s2 ∗ s3 = (s1 ∗ s1) ∗ s4, as ψ(s1)−1(s4) = s3, we
have s3 = (s1 ∗ s1) ∗ (s1 ∗ s3) = Ω3(s1, s1, s3). So f = Π3(s1, s1, s3)s4.

Finally, for s4, we first write s4 = s3 ∗ a, then a = s2 ∗ b and b = s1 ∗ c (going through
the letters of f = s1s2s3s4 from right to left), so that s4 = s3 ∗ (s2 ∗ (s1 ∗ c))). Replacing
s3, s2 and s1 by their previously found expressions gives

s4 = ((s1 ∗ s1) ∗ (s1 ∗ s3)) ∗ ((s1 ∗ s1) ∗ (s1 ∗ c)) = Ω4(s1, s1, s3, c).

Here we find c = s2 so
f = Π4(s1, s1, s3, s2).

One can also check for instance that s4 = Ω4(s1, s1, s3, s2) also equals Ω4(s3, s1, s1, s2) and
so f = Π4(s3, s1, s1, s2).
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Chapter 1. Set-theoretical solutions to the Yang–Baxter equation

1.4 Monomial matrices
In the next section, we will introduce the representation of Dehornoy from [Deh15] that
will be used to study solutions, but first we need the basics on monomial matrices. We
recall the definition and some properties: A matrix is said to be monomial if each row
and each column has a unique non-zero coefficient. We denote by Monomn(R) the set
of monomial matrices over a ring R. To a permutation σ ∈ Sn we associate the per-
mutation matrix Pσ where the i-th row contains a 1 on the σ(i)-th column, for instance

P(123) =

0 1 0
0 0 1
1 0 0

. We then have Pσ


v1
...
vn

 =


vσ(1)

...
vσ(n)

 and thus, if ei is the i-th canonical

basis vector, Pσ(ei) = eσ−1(i). Moreover, for σ, τ ∈ Sn we find PσPτ = Pτσ. It is well
known that a monomial matrix admits a unique (left) decomposition as a diagonal matrix
right-multiplied by a permutation matrix. Thus, if m is monomial, Dm will denote the
associated diagonal matrix, and Pm the associated permutation matrix, i.e. m = DmPm,
and by ψ(m) we will denote the permutation associated with the matrix Pm. Let D be a
diagonal matrix and P a permutation matrix. We denote the conjugate matrix PDP−1

as PD, and if σ is the permutation associated with P we will also write σD. The following
statements are well-known. As they will be essential throughout this paper, we state them
explicitly:
Lemma 1.4.0.1. Let D be a diagonal matrix and P a permutation matrix. Then PD is
diagonal.

Moreover, the i-th row of D is sent by conjugation to the σ−1(i)-th row.
In particular, this implies that, PσD = σDPσ giving a way to alternate between left

and right (unique) decomposition of monomial matrices.
Corollary 1.4.0.2. Let m and m′ be monomial matrices. Then we have the identities
Dmm′ = Dm

(
ψ(m)Dm′

)
and ψ(mm′) = ψ(m′) ◦ ψ(m).

To simplify notations we will sometimes only write mDm′ for ψ(m)Dm′.

As a final example, let m =

0 a 0
0 0 b
c 0 0

, m′ =

0 0 x
0 y 0
z 0 0

, which decomposes with

Dm = diag(a, b, c), Dm′ = diag(x, y, z) and ψ(m) = (123), ψ(m′) = (13). We find
ψ(m′) ◦ ψ(m) = (13) ◦ (123) = (12) and

Dm

(
ψ(m)Dm′

)
= diag(a, b, c) (123)diag(x, y, z) = diag(a, b, c)diag(y, z, x) = diag(ay, bz, cx)

and indeed mm′ =

 0 ay 0
bz 0 0
0 0 cx

 = diag(ay, bz, cx)P(12).

1.5 The monomial representation
We can now define and study Dehornoy’s representation ([Deh15]), which will allow for
a simplification and a better understanding of his proofs. This representation is a mono-
mial representation, which will allow the use of particular techniques following from the
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previous section. In particular, the fact that this representation is monomial relies on the
I-structure of the structure group ([GV98; Deh15]) and provides an alternative description
of this structure. A similar representation, one dimension higher, also appears in a work
of Chouraqui ([Cho23]).

Recall that we fix (S, ∗) a finite cycle set of size n with S = {s1, . . . , sn} and with
structure monoid (resp. group) M (resp. G).

Proposition 1.5.0.1 ([Deh15]). Let z be an indeterminate and consider the matrix group
Monomn(Q(z), denote Dsi

= diag(1, . . . , z, . . . , 1) the n× n diagonal matrix with a z on
the i-th row.

The map Θ defined on S by

Θ(si) := Dsi
Pψ(si) (1.5)

extends to a representation G → Monomn(Q(z)) and similarly to a morphism M →
Monomn(Q[z]).

Proof. We have to show that Θ respects the defining relations of G (and M). Let si, sj
be in S and define g = Θ(si)Θ(si ∗ sj) and g′ = Θ(sj)Θ(sj ∗ si). By Corollary 1.4.0.2 we
have Dg = Dsi

ψ(si)Dsi∗sj
= Dsi

ψ(si)Dψ(si)(sj) and the latter is equal to Dsi
Dsj

by Lemma
1.4.0.1. By symmetry and commutativity of diagonal matrices, we deduce Dg = Dg′ .

On the other hand, again by Corollary 1.4.0.2, we have ψ(g)(t) = ψ(si∗sj)◦ψ(si)(t) =
(si ∗ sj) ∗ (si ∗ t) for all t ∈ S. By symmetry and as S is a cycle set we deduce that
ψ(g) = ψ(g′) and so g = g′.

For simplicity, we will write Θ(g) = DgPg to mean Θ(g) = DΘ(g)PΘ(g).

Remark 1.5.0.2. The image of G by Θ lies in the subgroup of Monomn(Q(z) consisting
of matrices such that the non-zero coefficients (i.e. the diagonal part of the decomposition)
consists only of powers of z (including z0 = 1). We denote this subgroup by Σn. By Σ+

n we
denote the submonoid of Monomn(Q[z]) consisting of matrices whose non-zero coefficients
are non-negative powers of z only, and by Di the matrix diag(1, . . . , z, . . . , 1) with a z in
the i-th place.

Let G+ be the submonoid of G of positive words. As M and G+ have the same gen-
erators, their images in their respective representations Θ coincide. Thus, when working
in Monomn(Q(z), we will not distinguish between Θ(M) and Θ(G+). Later, we will see
that in fact G is the group of fractions of M and M = G+.

Example 1.5.0.3. Set S = {s1, s2, s3} and ψ(si) = (123) for all i.

Θ(s1) =

z 0 0
0 1 0
0 0 1


0 1 0

0 0 1
1 0 0

 =

0 z 0
0 0 1
1 0 0


and similarly

Θ(s2) =

0 1 0
0 0 z
1 0 0

 Θ(s3) =

0 1 0
0 0 1
z 0 0

 .
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As a direct consequence of Lemma 1.4.0.1 we have the following, which will be useful
for going from left to right monomial decompositions.

Proposition 1.5.0.4. For all s, t ∈ S:

PsDt = ψ(s)DtPs = Dψ(s)−1(t)Ps.

In particular, PsDs∗t = DtPs.

Because the representation is monomial, we are interested in the non-zero coefficient
of each row of a matrix, which will be a power of z. Moreover, as the monoid only has
quadratic relations, we can define a length on words from these powers (as each generators
contributes by one power of z).

Definition 1.5.0.5. For an element g ∈ Σn, we define its "coefficient-powers tuple" cp(g)
to be the unique n-tuple of integers (c1, . . . , cn) such that Dg = diag(zc1 , . . . , zcn).

We set ℓ(g) := ∑n
i=0 | ci |.

For σ ∈ Sn, by σ(c1, . . . , cn) we denote (cσ(1), . . . , cσ(n)).

Example 1.5.0.6. If g =


z2 0 0 0
0 0 1 0
0 0 0 z−1

0 z 0 0

, then cp(g) = (2, 0,−1, 1) and ℓ(g) = 2 + 0 +

1 + 1 = 4.

Proposition 1.5.0.7. For all g, h ∈ Σn we have:

cp(gh) = cp(g) + ψ(g)cp(h). (1.6)

Moreover, if g, h ∈ Θ(M), then ℓ(gh) = ℓ(g) + ℓ(h).

Proof. The first equality is a direct consequence of Corollary 1.4.0.2 applied to the rep-
resentation. The second follows from the fact that the defining relations of the structure
monoid respects the length of words.

Set Ω′ = Θ◦Ω and Π′ = Θ◦Π the evaluation in the representation of the constructions
from Section 1.3, that is Π′

k(t1, . . . , tk) = Θ(Π(t1, . . . , tk)). The following proposition and
corollary shows how Dehornoy’s calculus works very well with the monomial representa-
tion, and how we can deduce a Pi-expression for any element in the monoid.

Proposition 1.5.0.8. Let t1, . . . , tk be in S, then

DΠ′
k

(t1,...,tk) = Dt1 · · ·Dtk

and
PΠ′

k
(t1,...,tk) = PΩ′

1(t1) · · ·PΩ′
k

(t1,...,tk).

Or, equivalently for all s in S, ψ(Π′
k(t1, . . . , tk))(s) = Ω′

k+1(t1, . . . , tk, s).
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Proof. We proceed by induction: for r = 1, Π1(t1) = t1 and there is nothing to prove.
Assume r ≥ 1 and the property true for r−1. Then, by definition we have Π(t1, . . . , tk) =
Πk−1(t1, . . . , tk−1) · Ωk(t1, . . . , tk). So, by the induction hypothesis

Π′
k(t1, . . . , tk) =

(
Dt1 . . . Dtk−1PΩ′

1(t1) . . . PΩ′
k−1(t1,...tk−1)

) (
DΩ′

k
(t1,...,tk)PΩ′

k
(t1,...,tk)

)
Note that Ω′

k(t1, . . . , tk) = Ω′
k−1(t1, . . . , tk−1) ∗ Ω′

k−1(t1, . . . , tk−2, tk). So by Proposition
1.5.0.4 we get

PΩ′
k−1(t1,...tk−1)DΩ′

k
(t1,...,tk) = PΩ′

k−1(t1,...tk−1)DΩ′
k−1(t1,...,tk−1)∗Ω′

k−1(t1,...,tk−2,tk)

= DΩ′
k−1(t1,...,tk−2,tk)PΩ′

k−1(t1,...tk−1).

We can then repeat this process for all the permutation matrices PΩ′
k−2(t1,...tk−2), . . . , PΩ′

1(t1)
and get

PΩ′
1(t1) . . . PΩ′

k−1(t1,...tk−1)DΩ′
k

(t1,...,tk) = DtkPΩ′
1(t1) . . . PΩ′

k−1(t1,...tk−1).

Thus we find
Π′
k(t1, . . . , tk) = (Dt1 . . . Dtk)

(
PΩ′

1(t1) . . . PΩ′
k

(t1,...,tk)
)
.

As PσPτ = Pτσ, we have ψ(Π′
k(t1, . . . , tk))(s) = ψ(Ω′

k(t1, . . . , tk)) ◦ · · · ◦ ψ(Ω′
1(t1))(s).

Then ψ(Ω′
1(t1))(s) = t1 ∗ s = Ω2(t1, s), which in turns gives ψ(Ω′

2(t1, t2)) ◦ ψ(Ω′
1(t1))(s) =

ψ(Ω2(t1, t2))(Ω2(t1, s)) = Ω2(t1, t2) ∗ Ω2(t1, s) = Ω3(t1, t2, s). By induction, this gives the
last statement.

Corollary 1.5.0.9. Any tuple of non-negative integers (c1 . . . , cn) ∈ Nn can be realized
as the coefficient-powers tuple of a matrix in Θ(MS).

Proof. Let l = ∑
i
ci and take the l-tuple containing ci times the element si. By the

previous Proposition 1.5.0.8, we know that Π′
l applied to this tuple gives the expected

result.

Example 1.5.0.10. As in 1.3.0.7 take S = {s1, s2, s3, s4} with

ψ(s1) = (1234) ψ(s3) = (24) ψ(s2) = (1432) ψ(s4) = (13).

The tuple (2, 1, 1, 0) can be obtained from Π4(s1, s1, s3, s2) = s1s2s3s4 = f as, in the
induction of the proof of Proposition 1.5.0.8 we did:

Ps1Ps2Ps3Ds4 = Ps1Ps2Dψ(s3)−1(s4)Ps3 = Ps1Dψ(s2)−1◦ψ(s3)−1(s4)Ps2Ps3

= Dψ(s1)−1◦ψ(s2)−1◦ψ(s3)−1(s4)Ps1Ps2Ps3

to obtain the last s2 in Π4(s1, s1, s3, s2).
Computing ψ(s1)−1◦ψ(s2)−1◦ψ(s3)−1(s4) = s2 precisely retrieves the Example 1.3.0.7.

Corollary 1.5.0.11. Any f ∈M is uniquely determined by DΘ(f).
Moreover, this diagonal part can be read as the entries when taking a Π-expression

of f , i.e. if DΘ(f) = Da1
s1 · · ·D

an
sn

then f = Πa1+···+an(s1, . . . , s1, . . . , sn, . . . , sn) where si
occurs ai times.
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From Proposition 1.5.0.8 the diagonal part is determined by the entries of a Π-
expression, which is invariant by permutations of those entries by Proposition 1.3.0.4.
This implies that the representation Θ is injective when restricted to the monoid.

Proof. This follows from the previous proposition and Proposition 1.3.0.6. Take Θ(f) =
DfPf ∈ M with Df = Da1

s1 . . . D
ak
sk

. By Proposition 1.3.0.6 there exist t1, . . . , tk ∈ S such
that f = Πk(t1, . . . , tk). By Proposition 1.5.0.8, we have DΘ(f) = Dt1 . . . Dtk , this gives
the second statement. By the unicity of the monomial decomposition, we must have ai
times si in the tuple (t1, . . . , tk) and by Proposition 1.3.0.4 the orders of the ti’s does not
matter.

Thus if g ∈ M is such that DΘ(g) = DΘ(f), by the same argument we must have
g = Πk(t1, . . . , tk) = f .

Denote Dn (resp. D+
n ) the subset of diagonal matrices of Σn (resp. Σ+

n ). We have an
obvious inclusion D+

n ↪→ Dn, and a faithful representation Nn ∼→ D+
n .

We now focus on extending the results from the structure monoid to the structure
group:

Corollary 1.5.0.12. The natural morphism M → G sending each generator si ∈ M to
si ∈ G is injective.

Proof. We have shown that there is a (set) bijection Π: Nn ∼→ M . Then we have the
following commutative diagram:

Nn M G

D+
n Dn

∼
Π

∼

Because the composition Nn → D+
n → Dn is injective, and as Π: Nn → M is bijective,

the composition M → G→ Dn must be injective, so necessarily M injects in G.

A word t1 . . . tk over S representing an element g in M is said to be reduced if its
length k is minimal among the representative words of g.

Proposition 1.5.0.13. Any element g ∈ G can be decomposed as a reduced left-fraction
in M , that is:

∃f, h ∈M, g = fh−1 with ℓ(g) = ℓ(f) + ℓ(h)
where ℓ denotes the length as a S ∪ S−1-word.

Proof. Let g ∈ G, and write a reduced decomposition of g as product of elements in
S ∪S−1. If this expression is of length 1, this is trivial. If the length is 2, we have 4 cases
with s, t ∈ S: st, s−1t−1, st−1 and s−1t. The first 3 cases are of the desired form. For the
last one, the defining relations of G give

s(s ∗ t) = t(t ∗ s)⇐⇒ s−1t = (s ∗ t)(t ∗ s)−1.

For arbitrary length, we can inductively use the same relation s−1t = (s ∗ t)(t ∗ s)−1 to
"move" all inverses of the generators to the right in a decomposition of g, which gives the
desired form.
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We will soon state a similar result for right-fractions (Corollary 1.5.0.16).

Corollary 1.5.0.14. Any element in G can be decomposed as a left-fraction fh−1 in M
such that Dh commutes with all permutation matrices (more precisely that Dh is a power
of Ds1 . . . Dsn).

Proof. Take a Π-expression Πk(t1, . . . , tk) of h. Up to permuting the entries, by Proposi-
tion 1.3.0.4, we can assume that h = Πk(s1, . . . , s1, . . . , sn, . . . , sn), where for 1 ≤ i ≤ n
each si occurs ai times and a1 + · · · + an = k. Let j be such that aj is (one of) the
biggest of the ai’s, then if for some i we have ai < aj we can consider a new element
Πk+1(s1, . . . , s1, . . . , sn, . . . , sn, si) = h ·Ωk+1(s1, . . . , s1, . . . , sn, . . . , sn, si), where si occurs
ai + 1 times and that is obtained from h by right-multiplying by an element in S. Do-
ing so, until all si occurs aj times, provides an element h which is obtained from h by
right-multiplication by some h′ ∈M and such that Dh = (Ds1 . . . Dsn)aj .

Let Pσ be a permutation matrix, then PσDh = σDhPσ = DhPσ where the last equality
is because all the diagonal terms in Dh are equal so are invariant by σ. Finally fh′(h)−1 =
fh−1, so replacing (f, h) by (fh′, hh′) gives us the result.

Example 1.5.0.15. Take S = {s1, s2, s3} and ψ(si) = (123) for all i. Consider g =
s−1

3 s−1
2 s3, the relation s2s1 = s3s3 (i.e. s1s

−1
3 = s−1

2 s3) gives g = s−1
3 s1s

−1
3 ; similarly

s3s2 = s1s1 (i.e. s2s
−1
1 = s−1

3 s1) yields g = s2s
−1
1 s−1

1 .
Let f = s2 and h = s1s1 so that g = fh−1, we have h = s1(s1 ∗ s3) = Π2(s1, s3),

thus Dh = DΘ(h) = Ds1Ds3, which is not stable under permutation (as we have (123)Dh =
Ds(123)−1(1)

Ds(123)−1(2)
= Ds3Ds2 ̸= Dh). To complete h so that it commutes, we must add

Ds3, so we take h′ = Π3(s1, s2, s3) = hs1 and f ′ = fs1. Now Dh′ = Ds1Ds2Ds3 commutes
with permutation matrices, and f ′h′−1 = fs1s

−1
1 h−1 = fh−1 = g.

Corollary 1.5.0.16. Any element in G can be decomposed as a reduced right-fraction in
the submonoid G+ = M , that is:

∀g ∈ G,∃f, h ∈M, g = h−1f with ℓ(g) = ℓ(f) + ℓ(h).

In particular, G is the group of fractions of M .

Proof. From Proposition 1.5.0.13, start with a reduced left-fraction of g as fh−1 such
that Dh commutes with all permutation matrices. Then g = fh−1 = DfPfP

−1
h D−1

h =
D−1
h DfPfP

−1
h . So hg = DhPhg = PhDhg = PhDhD

−1
h DfPfP

−1
h = PhDfPfP

−1
h =

hDfPhPfP
−1
h = f ′. As f ∈ M , so does f ′, and thus g = h−1f ′. Reducing this expression

if necessary finishes the proof.

In [ESS99, Proposition 2.5] and then [GV98; Deh15] it is shown that the structure
group G of a finite cycle set S of size n has an I-structure: G embeds in Zn ⋊ Sn such
that projecting on the first coordinate is a bijection. Moreover, the structure monoid
M embeds in G and corresponds to first coordinates in Nn. We’ve already seen that
M embeds in G, we now prove in the following statements a matricial equivalent of the
I-structure:

Theorem 1.5.0.17 ([Deh15]). Let S be a finite cycle set of cardinal n. Then Θ is a
faithful representation of G.
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Proof. Let g ∈ G, from Proposition 1.5.0.13 we know that there exist f, h ∈M such that
g = fh−1. Thus as Θ is a representation:

Θ(g) = Idn ⇐⇒ Θ(f) = Θ(h)

By Corollary 1.5.0.12, Θ(f) = Θ(h)⇐⇒ f = h, thus Θ is faithful.

From now on, we assume that S is a finite cycle set with S = {s1, . . . , sn}. We identify
G with its image by the (faithful) representation Θ. We can as well identify Ω (resp. Π)
with its image Ω′ (resp. Π′) by Θ.

Definition 1.5.0.18. A subgroup of Σn is called permutation-free if the only permutation
matrix it contains is the identity.

Proposition 1.5.0.19. G is permutation-free.

Proof. Suppose Pσ is a permutation matrix (associated with σ ∈ Sn) that is in G. Then
by Proposition 1.5.0.13, there exists f, g ∈M such that Pσ = fg−1, i.e. DfPf = PσDgPg.
And by Corollary 1.5.0.14 we can moreover assume that Dg commutes with permutation
matrices (PσDg = DgPσ), so DfPf = DgPσPg. By the unicity of the monomial decompo-
sition, we must have Df = Dg and Pf = PσPg, so by Proposition 1.5.0.11 f = g and thus
Pσ =Id (and σ =id).

Corollary 1.5.0.20. An element g ∈ G is uniquely determined by Dg.

Proof. Suppose for g, h ∈ G we have Dg = Dh. Then

g−1h = (DgPg)−1(DhPh) = P−1
g D−1

g DgPh = P−1
g Ph ∈ G

We have P−1
g Ph is a permutation matrix G, so it must be the identity. Thus Pg = Ph and

thus g = h.

Corollary 1.5.0.21. An element g in G is in M if and only if it has only non-negative
powers of z as non-zero coefficients (i.e g ∈ Σ+

n ).

Proof. From Proposition 1.3.0.6 we know that g ∈M implies g ∈ Σ+
n (where we identified

G with its image Θ(G)). Reciprocally, suppose g ∈ G is such that Θ(g) = DgPg ∈M+
n (i.e

Dg ∈ D+
n ). From Corollary 1.5.0.9, we know there exists f ∈M such that Df = Dg ∈ D+

n .
Then g−1f = P−1

g D−1
g DfPf = P−1

g Pf is a permutation matrix. By Proposition 1.5.0.19,
this permutation matrix must be trivial, so g = f is in M .

We relate Proposition 1.5.0.19 to the two usual ways to present the I-structure: an
embedding and a 1-cocycle. A 1-cocycle associated to an action ϕ : G→ Aut(H) is a map
f : G→ H such that f(gg′) = f(g)ϕ(g)(f(g′)) for all g, g′ in G.

Corollary 1.5.0.22 ([ESS99; GV98]). G embeds as a subgroup of Zn ⋊Sn such that the
restriction to the first coordinate is bijective (i.e G ∩ {1}⋊Sn = {1}).

Equivalently, we have a bijective 1-cocycle cp : G→ Zn associated to the action given
by ψ−1.

Moreover, in this embedding, M is identified with G ∩ (Nn ⋊Sn).
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Proof. Consider the map f : G → Zn ⋊Sn defined by f(g) = (cp(g), ψ−1(g)). Then, by
Proposition 1.5.0.7, f(gh) = (cp(g) + ψ(g)cp(h), ψ−1(gh)). Corollary 1.4.0.2 implies that
ψ(gh) = ψ(h)(g), thus ψ−1(gh) = ψ−1(g)ψ−1(h). Also note that if (a1, . . . , an) ∈ Zn
and σ ∈ Sn, then the action of σ is given by σ · (a1, . . . , an) = (aσ−1(1), . . . , aσ−1(n)) =
σ−1

(a1, . . . , an). So we find

f(g)f(h) = (cp(g), ψ−1(g)) · (cp(h), ψ−1(h)) = (cp(g) + ψ(g)cp(h), ψ−1(g)ψ−1(h)) = f(gh).

Meaning that f is a morphism.
Corollary 1.5.0.20 says that an element of g is uniquely determined by its diagonal

part, thus its cp-tuple. This implies that f is injective, and more precisely bijective when
restricted to the first coordinate.

The 1-cocycle version is also given by Proposition 1.5.0.7, as shown in the first para-
graph of this proof.

Corollary 1.5.0.21 precisely says that an element of M corresponds to elements with
positive coefficient powers, i.e. M embeds in Nn ⋊Sn.

Proposition 1.5.0.23. For any tuple a = (a1, . . . , an) in Zn, there exists a unique g ∈ G
with cp(g) = (a1, . . . , ak). In particular, the bijection Π: NS → M extends to a bijection
Π: ZS → G.

Moreover, if all ai ≥ 0 then g ∈ M has a Π-expression g = Πℓ(a) which is of length
ℓ(a) over S and is minimal by additivity of ℓ.

Similarly, if g ∈ G, writing it as a reduced fraction in M also gives that the length of
g over S ∪ S−1 is ℓ(g).

Proof. The existence of g is given by Corollary 1.5.0.9. For the unicity, if we had a =
cp(g) = cp(h) for some g, h in G, then Dg = Dh = Da1

s1 . . . D
an
sn

and thus g = h by the
previous Corollary 1.5.0.20.

Moreover, Proposition 1.5.0.19 tells us that G is permutation-free, meaning that the
cp-tuple uniquely determines an element of G, providing a bijection Π: ZS → G.

If all ai’s are positive, then we apply Corollary 1.5.0.9 to get a Π expression in M .
The minimality is the insured by Proposition 1.5.0.7 (each generators contributes by 1 to
ℓ(g)).

Finally if g is in G, we can take a reduced fraction g = fh−1 from Proposition 1.5.0.13,
which also tells us that the length is then exactly ℓ(g) = ℓ(f) + ℓ(h).

We’ve seen that the structure group of a cycle set is permutation-free, we now state a
reciprocal under a condition on the atom set of the submonoid:

Recall that we denote by Σn the group of monomial matrices with non-zero coefficients
in {zk, k ∈ Z}, Σ+

n the submonoid of those with only non-negative powers, Di the diagonal
matrix diag(1, . . . , 1, z, 1, . . . , 1) and ψ(m) the permutation associated to the permutation
matrix of m in the decomposition m = DmPm.

Theorem 1.5.0.24. Let G be a subgroup of Σn, denote G+ = G∩Σ+
n (the submonoid of

positive elements). Suppose that the set of atoms S = {s1, . . . , sn} of G+ has cardinal n,
generates G and there exists a positive integer k such that Dsi

= Dk
i . Let the operation ∗

be defined on S by si ∗ sj = ψ(si)(sj), then the following assertions are equivalent:

(i) G is permutation-free
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(ii) s(s ∗ t) = t(t ∗ s) for all s, t in S

(iii) G is the structure group of S

Proof. First notice that z 7→ zk provides an injective morphism Σn → Σn, so up to a
change of variable z′ = zk, we can assume k = 1.

(i) ⇒ (ii): For 1 ≤ i, j ≤ n, we have from Proposition 1.5.0.4:

sisψ(i)(j) = DiPsi
Dsi∗sj

Psi∗sj
= DiDjPsi

Psi∗sj

By symmetry, sj(sj ∗ si) will have the same diagonal part. Then

(si(si ∗ sj))−1 (sj(sj ∗ si)) = P−1
si(si∗sj)D

−1
si(si∗sj)Dsj(sj∗si)Psj(sj∗si) = P−1

si(si∗sj)Psj(sj∗si) ∈ G.

So by the assumption that G is permutation-free we deduce si(si ∗ sj) = sj(sj ∗ si).
(ii) ⇒ (iii): Recall that Psi(si∗sj) = Psi

Psi∗sj
= Pψ(si∗sj)◦ψ(si), so we find ψ(si ∗ sj) ◦

ψ(si) = ψ(sj∗si)◦ψ(sj). For t ∈ S, this means that ψ(si∗sj)◦ψ(si)(t) = ψ(sj∗si)◦ψ(sj)(t),
i.e. (si ∗ sj) ∗ (si ∗ t) = (sj ∗ si) ∗ (sj ∗ t), so precisely that S is a cycle set. Then the
generators of M correspond to the generators of MS and both are submonoids of Σn, so
M = MS. Similarly, as S generates G we have GS = G.

(iii)⇒ (i): This is Proposition 1.5.0.19.

1.6 Braces
Braces were first introduced by Rump in [Rum07] through linear cycle sets to provide
extra-structure on the structure group which is a commutative operation (denoted +) very
close to being distributive over the group operation (thus resembles a ring). To obtain
the brace structure on the structure group, the I-structure is needed; thus, although brace
theory greatly simplifies proofs, it couldn’t be used before. An equivalent definition was
then introduced by Cedó, Jespers and Okniński in [CJO14] and then in a large survey
again by Cedó in [Ced18]. We will use their definition of a (left) brace throughout this
thesis.

Definition 1.6.0.1 ([Rum07; Ced18]). A brace is a triple (B,+, ·) such that (B,+) is an
abelian group, (B, ·) is a group and for all a, b, c in B:

a(b+ c) + a = ab+ ac.

(B,+) will be called the additive group and (B, ·) the multiplicative group of the brace B.

We now fix B a brace. The additive (resp. multiplicative) inverse of an element a in
B is denoted −a (resp. a−1).

Remark 1.6.0.2. Note that, if 0 is the additive identity and 1 the multiplicative identity,
then taking a = 1, b = c = 0 yields 1 ∗ (0 + 0) + 1 = 1 ∗ 0 + 1 ∗ 0, thus 1 = 0.

Example 1.6.0.3. If (G,+) is an abelian group then (G,+,+) is a brace, called the
trivial brace.

Taking (B,+) = Z/2Z× Z/2Z with (a, b) · (c, d) =
(a+ c, b+ d), a+ b = 0 mod 2

(a+ d, b+ c), a+ b = 1 mod 2
can be checked to be a brace, and obviously (0, 0) is the identity of (B, ·).
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Proposition-Definition 1.6.0.4 ([Ced18]). For any a in a brace B, the map λ : (B, ·)→
Aut((B,+)) defined by λa(b) = ab− a for all a, b in B, is a well-defined morphism.

This also gives ab = a+λa(b). This will be used everywhere to switch between products
and sum of elements.

Example 1.6.0.5. From the previous example we have respectively λg = idG for all g in
G, and in (B,+, ·) λ((a, b)) = σa+b where σ permutes the two coordinate of (B,+), and
obviously (0, 0) is the identity of (B, ·).

Remark 1.6.0.6. In [BCJ16, Theorem 3.1], the authors explicit a way to construct invo-
lutive non-degenerate set-theoretical solutions to the Yang–Baxter equation from a brace.
There exists a generalization, introduced by Guarnieri and Vendramin in [GV17], to solu-
tions that are not necessarily involutive: skew braces. Skew braces are defined in a similar
fashion to braces, with the difference that (B,+) is not supposed to be abelian. Thus, in
the definitions, one has to be careful of the non-commutativity of addition, for instance
the defining condition of a skew brace is a(b + c) = ab − a + ac, which coincides with
the one for a brace when addition is commutative. Similarly, the λ-map is defined by
λa(b) = −a+ ab to be a morphism (B, ·)→ Aut((B,+)).

However, structure groups of non-involutive solutions can have torsion, so they are
not always Garside groups, thus the reason why we restrict to only defining braces. For
instance, consider the solution (from [Jes+21]), over X = (Z/3Z) defined by r(x, y) =
(2y, x + 2y). Then on X × ×X we have r1r2r1(x, y, z) = (z, 2y + z, x + 2y + 2z) =
r2r1r2(x, y, z), so r satisfies the Yang–Baxter equation. Moreover, r−1(x, y) = (y+2x, 2x),
so r is bijective. And if we write r(x, y) = (σx(y), τy(x)), then both σx and τy are always
bijective (the first one because 2 is invertible, the second for the same reason plus a trans-
lation). In the end, we have a non-involutive non-degenerate solution, whose structure
group is given by G = ⟨x, y, z | xy = yx = z2, xz = zx = y2⟩, and using that z = y2x−1

we see that this presentation is equivalent to G ∼= ⟨x, y | xy = yx, x3 = y3⟩ ∼= Z × Z/3Z,
which has non-trivial torsion.

Lemma 1.6.0.7 ([Ced18]). For any a, b in B we have:

1. λaλb = λa+λa(b).

2. ab−1 = −λab−1(b) + a

3. If λa = λb then ab−1 = a− b

Proof. This first one follows from gh = g + λg(h).
For the second one, −λab−1(b) + a = −ab−1b− ab−1 + a = ab−1.
And then, λab−1 = λaλ

−1
b = λaλ

−1
a = idB.

Lemma 1.6.0.8. For any a, b in B, we have aλ−1
a (b) = bλ−1

b (a).
Moreover, λ−1

λ−1
a (b)λ

−1
a = λ−1

λ−1
b

(a)λ
−1
b .

Proof. Firstly,

aλ−1
a (b) = a(a−1b− a−1) = b− 1 + a = b− 0 + a = b+ a = a+ b = bλ−1

b (a).
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Then from the fact that λ : (B, ·)→ Aut(B,+) is a morphism we have that λ−1
ab = λ−1

b λ−1
a

so
λ−1
λ−1

a (b)λ
−1
a = λ−1

aλ−1
a (b) = λ−1

bλ−1
b

(a) = λ−1
λ−1

b
(a)λ

−1
b .

The following is implicit in [Ced18]:

Lemma 1.6.0.9 ([Ced18]). Let S be a subset of a brace (B,+, ·). Assume that λs(S) ⊆ S
for any s in S. Then (S,+) is a subgroup of (B,+) if and only if (S, ·) is a subgroup of
(B, ·).

Proof. By Proposition-Definition 1.6.0.4, we have ab = a+ λa(b), or equivalently a+ b =
aλ−1

a (b). If S is stable by the action of any λs with s in S, then it is stable under + if
and only if it is stable under ·. By Remark 1.6.0.2, the identities of both laws are the
same. Finally, we deduce from ab = a+ λa(b) that −a = λa(a−1), thus S is stable under
inversion for + if and only if it is stable under inversion for ·.

Definition 1.6.0.10 ([Ced18]). Let (B,+, ·) be a brace.

• S ⊆ B is a subbrace if it is a subgroup of both (B,+) and (B, ·).

• L ⊆ B is a left ideal if it is a subgroup of (B,+) and λa(L) ⊆ L for all a in B.

• I ⊆ B is an ideal if it is a normal subgroup of (B, ·) and λa(I) ⊆ I for all a in B.

Proposition 1.6.0.11 ([Ced18]). Let (B,+, ·) be a brace and I ⊆ B.

• I is an ideal ⇒ I is a left ideal ⇒ I is a subbrace.

• If I is an ideal then the multiplicative quotient B/I has an induced brace structure
(B/I,+, ·).

• Soc(B) = Ker(λ) = {a ∈ B | ∀b ∈ B, ab = a+ b} is an ideal called the Socle of B.

Going back again at the I-structure of [ESS99; GV98; Deh15], we obtain in a matricial
way the brace structure of the structure group.

Theorem 1.6.0.12 ([Ced18]). The structure group G of a finite cycle set S has a brace
structure with the usual multiplication, addition given by g+h as the unique element with
Dg+h = DgDh, and such that (G,+) ≃ ZS.

In particular, if g and h are in M , so is g + h.
Moreover, Soc(G) = {g ∈ G | Pg = Id}.

Proof. Let g, h and k be in G. Then g(h + k) = DgPg(DhDkPh+k) = Dg
gDh

gDkPgPh+k,
so that Dg(h+k)+g = D2

g
gDh

gDk. As Dgh = Dg
hDh, we deduce that Dg(h+k)+g = Dgh+gk

and thus, from Theorem 1.5.0.19 g(h+ k) + g = gh+ gk.

Remark 1.6.0.13. Note that for any g in G, Idn = Dg−g = DgD−g thus

D−g = D−1
g ,

while 0 = g−1g = g−1 + λ−1
g (g) thus

Dg−1 = D−1
ψ(g)(g) = g

D−1
g .
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Corollary 1.6.0.14. For any s, t in S we have λs(t) = ψ(s)−1(t), or equivalently λ−1
s (t) =

s ∗ t.
Moreover, this implies that for any g in G and s in S, λg(s) = ψ(g)−1(s). In particular,

λg|S is a bijection.

Proof. λs(t) = st − s = DsPsDtPt − DsPs = DsDψ(s)−1(t)PsPt − DsPs which, from the
previous theorem, is the unique element with diagonal part (DsDψ(s)−1(t))D−1

s = Dψ(s)−1(t)
(as D−s = D−1

s , thus λs(t) = ψ(s)−1(t).
In general, if g = t1 . . . tk ∈ G with ti ∈ S for all 1 ≤ i ≤ k, then by Proposition-

Definition 1.6.0.4 λg = λt1 . . . λtk = ψ(t1)−1 . . . ψ(tk)−1 = (ψ(tk) . . . ψ(t1))−1. From Corol-
lary 1.4.0.2, we know that ψ(g)−1 = ψ(t1 . . . tk)−1 = (ψ(tk) . . . ψ(t1))−1, finishing the
proof.

From the previous theorem we can deduce a brace equivalent to Dehornoy’s calculus:

Corollary 1.6.0.15. The following identities hold for any t1, . . . , tk in S:

Πk(t1, . . . , tk) = t1 + · · ·+ tk

Ωk(t1, . . . , tk) = λ−1
t1+···+tk−1

(tk).
In particular, Θ(t1 + · · ·+ tk) = Dt1 · · ·DtkPt1+···+tk .

Proof. We proceed by induction: For k = 1, we have Ω1(s) = s = λ−1
1 (s) and Π1(s) = s.

Now suppose the statements hold for k ≥ 1, then we have Ωk+1(t1, . . . , tk, s) =
Ωk(t1, . . . , tk) ∗ Ωk(t1, . . . , tk−1, s) = λ−1

t1+···+tk−1(tk) ∗ λ−1
t1+···+tk−1(s) by the induction hy-

pothesis. From Corollary 1.6.0.14, we know that for g, h ∈ g λ−1
g (h) = ψ(g)(h) (and in S

λ−1
s (t) = s ∗ t). So we obtain Ωk+1(t1, . . . , tk, s) = λ−1

λ−1
t1+···+tk−1

(tk)(λ
−1
t1+···+tk−1(s)). Then, we

will apply Lemma 1.6.0.7 that tells us that for any a, b in G, λ−1
b λ−1

a = λ−1
a+λa(b). Taking

b = λ−1
t1+···+tk−1(tk) and a = t1 + · · ·+ tk−1, we have λa(b) = λt1+···+tk−1λ

−1
t1+···+tk−1(tk) = tk,

and so a+ λa(b) = t1 + · · ·+ tk. We then arrive at Ωk+1(t1, . . . , tk, s) = λ−1
t1+···+tk(s).

Finally, by Definition 1.3.0.1 Πk+1(t1, . . . , tk, s) = Πk(t1, . . . , tk)Ωk+1(t1, . . . , tk, s), so
applying the induction hypothesis and the result for Ωk+1 we obtain Πk+1(t1, . . . , tk, s) =
(t1 + · · · + tk)λ−1

t1+···+tk(s). Recall that, again by Proposition-Definition 1.6.0.4, ab =
a+λa(b), thus Πk+1(t1, . . . , tk, s) = (t1 + · · ·+ tk)+λt1+···+tkλ

−1
t1+···+tk(s) = t1 + · · ·+ tk + s,

finishing the proof.
Finally, by Proposition 1.5.0.8 we have

Θ(t1 + · · ·+ tk) = Θ(Πk(t1, . . . , tk)) = Dt1 · · ·DtkPt1+···+tk .

From the I-structure mentioned above we can write any element of G as g = ∑
s∈S

gss

where gs ∈ Z.
Then for any h in G, we have λh(g) = ∑

S gsλh(s) with λh(s) in S.
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CHAPTER 2

On Dehornoy’s constructions

In this section, we focus on Dehornoy’s construction of a Garside germ for structure groups
of cycle sets. They should be thought of as an analogue to what finite Coxeter groups are
to their associated Artin–Tits group. In this sense, Dehornoy called the germ of structure
group "Coxeter-like groups".

To construct this germ as in [Deh15], one associates to a cycle set an integer called
the Dehornoy’s class and usually denoted d. This class in then used to construct the
"Coxeter-like group" (or germ), and relate this quotient to the Garside structure of the
structure monoid. In the following chapters, multiples of the class and their associated
germs will play an important role.

In the first half of this section, we start by answering a question of Dehornoy ([Deh17,
Questions, Slide 18]). He wondered if one could obtain the Garside structure without
a theorem of Rump ([Rum05, Theorem 2]) and then retrieving said theorem from the
Garside structure. We obtain the Garside structure just with the monomial representation
(as a way to see the I-structure). We then retrieve Rump’s theorem, only using the I-
structure (thus not needing the Garside structure).

Then we focus on bounding Dehornoy’s class d for a fixed size of cycle sets n, with or
without extra-hypotheses on the cycle sets. The point is that this will give a restriction
on which braces to consider, as the best bound known so far is d ≤ n! which is very much
larger than numerical evidences suggests, as shown in Appendix A. We give a conjecture
on the bound of d, along with a proof under some hypotheses.

Finally we focus on the primes dividing d: in a similar fashion to [Bac18; CCS20],
we will highlight how the Sylows of the germs are related to the prime decomposition
of Dehornoy’s class d, and the way this can be reversed to construct new solutions. In
particular, this further reduces the problem of classifying solutions to those with class
a prime power. In the indecomposable case, this further reduces to the classification of
solutions whose class and size are powers of the prime.

We fix a finite cycle set (S, ∗) of size n with structure monoid (resp. group) M (resp.
G).

This work appears in [Fei24].
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2.1 Garsideness
In [Deh15], Dehornoy used Rump’s result on the non-degeneracy of finite cycle sets to
obtain the Garside structure of the structure group (first proved in [Cho10, Theorem 2]
and also appearing in [Rum15, Theorem 2]). In [Deh17, Questions Slide 18] Dehornoy
asked whether the opposite could be done and the objective of the next sections is to
provide a positive answer to this question. We will first obtain the Garside structure
without using Rump’s theorem, and then recover Rump’s result (without even using the
Garside structure). Both the Garsideness and Rump’s theorem will be directly deduced
from the I-structure alone. This section will mostly use the monomial matrix approach,
but in Section 2.3 we will give a brace equivalent of some statements (although requiring
the use of a consequence of Rump’s theorem).

Recall that we fix (S, ∗) a finite cycle set of size n with structure brace G and monoid
of positive elements M . Moreover, as the defining relations of the presentation of G
are homogeneous (quadratic), we have a well-defined length function ℓ : G → Z, which
restricts to M → N.

Definition 2.1.0.1. Let g1, g2 be elements of M . We say that g1 left-divides (resp. right-
divides) g2, that we note g1 ⪯ g2 (resp. g1 ⪯r g2) if there exists some h ∈ M such that
g2 = g1h (resp. g2 = hg1) and ℓ(g2) = ℓ(g1) + ℓ(h).

An element g ∈M is called balanced if the set of its left-divisors Div(g) and the set of
its right-divisors Divr(g) coincide.

Note that, as g1 = Pg1
g1Dg1 , its matricial transpose is given by gt1 = P t

g1Dg1 =
P−1
g1 Dg1 = g1Dg1P

−1
g1 , thus the coefficient on the i-th column of g1 is the coefficient on

the i-th row of gt1.

Proposition 2.1.0.2. Let g, h be in M .
Then g left-divides h if and only if for each row of g the power of z on this row is

smaller than the corresponding one of h.
Similarly, g right-divides h if and only if for each column of g the power of z on this

column is smaller than the corresponding one of h.

We will give an alternative brace proof and an interpretation of this statement in
section 2.3, but it will use Rump’s theorem (after reproving it).

Proof. Write gi = Dgi
Pgi

= Pgi

giDgi
. For left-divisibility, consider in G the element

h = g−1
1 g2 = P−1

g1 D
−1
g1 Dg2Pg2 . From Corollary 1.5.0.21, h ∈ M iff D−1

g1 Dg2 contains only
non-negative powers of z (to lie in Nn ⊆ Zn the additive group of the brace), precisely
meaning that the power on each row of g1 is less than the one of g2.

Similarly, for right divisibility, let h′ = g2g
−1
1 = Pg2

g2Dg2

(
g1Dg1

)−1
P−1
g1 , which is in M

iff g2Dg2

(
g1Dg1

)−1
contains only non-negative powers of z, which is the same criterion on

the columns.

Example 2.1.0.3. Taking S = {s1, s2} with ψ(s1) = ψ(s2) = (12), we can see that:(
0 z3

1 0

)
left-divides

(
z4 0
0 1

)
(as 3 ≤ z4 on the first line and 0 ≤ z0 on the second

since 1 = z0), but does not right divide it (as 3 > 0 on the second column).
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Corollary 2.1.0.4. Let g, h be in M . The left-gcd (resp. left-lcm) of g and h, denoted
g1 ∧ g2 (resp. g1 ∨ g2) is given by the unique element such that the coefficient-power on
each row is the minimum (resp. maximum) of those of g1 and g2.

For right-gcd (resp. right-lcm) it is the same but for each column.

Example 2.1.0.5. Consider S = {s1, s2, s3, s4} with

ψ(s1) = (1234) ψ(s3) = (24)
ψ(s2) = (1432) ψ(s4) = (13)

We have 
0 z 0 0
1 0 0 0
0 0 0 z
0 0 1 0

 ∧


0 0 0 z
0 0 z 0
0 1 0 0
1 0 0 0

 =


0 z 0 0
0 0 1 0
0 0 0 1
1 0 0 0


Which is given by gcd (s1 + s3, s1 + s2) = s1.
Similarly: 

0 z 0 0
1 0 0 0
0 0 0 z
0 0 1 0

 ∨


0 1 0 0
z 0 0 0
0 0 0 1
0 0 z 0

 =


z 0 0 0
0 z 0 0
0 0 z 0
0 0 0 z


Which is given by lcm (s1 + s3, s2 + s4) = s1 + s2 + s3 + s4.

For the right gcd and lcm, the explicit versions will be given in the next section using
Rump’s result (after reproving it).

Corollary 2.1.0.6. An element such that the non-zero terms of its i-th row and i-th
column are equal for all 1 ≤ i ≤ n is balanced.

Definition 2.1.0.7. An element of M is called a Garside element if it is balanced, Div(g)
is finite and generates M .

Proposition 2.1.0.8 ([Deh15]). The element ∆ = ∑
S s is a Garside element of M .

Proof. Because all the non-zero coefficients of ∆ are equal, it is balanced.
Its set of divisors is the set of elements with non-zero coefficients 1 or z and so is finite

and has cardinal 2n, and it contains all the generators s so also generates M.

Remark 2.1.0.9. The powers of ∆, which are given by ∆k = ∑
S ks, are also Garside

elements by the same reasoning.
More generally, Garside elements are precisely the balanced elements g such that gs ≥

1.

Definition 2.1.0.10 ([Deh+15]). A monoid is said to be a Garside monoid if:

(i) It is cancellative, i.e. if for every element g1, g2, h, k, hg1k = hg2k ⇒ g1 = g2.

(ii) There exists a map ℓ to the integers such that ℓ(g1g2) ≥ ℓ(g1) + ℓ(g2) and ℓ(g) =
0⇒ g = 1.

(iii) Any two elements have a gcd and lcm relative to ⪯ (resp. ⪯r).
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(iv) It possesses a Garside element ∆.
The group of fraction of a Garside monoid is called a Garside group.
Proposition 2.1.0.11 ([Deh15]). M is a Garside monoid.
Proof. The length of words (as the relations of G respects length) satisfies (ii) as an
equality.

For (iii) we have Corollary 2.1.0.4 and for (iv) Proposition 2.1.0.8.
We are left to prove (i), which is a direct consequence of the fact that M injects in

G. We can see also this from restricting the representation to M and as the elements are
monomial matrices, we deduce the cancellative property.
Corollary 2.1.0.12. G is a Garside group.
Proof. This follows from the fact that G is the group of fraction of the Garside monoid
M .
Remark 2.1.0.13. In essence, the fact that M is left-cancellative and admits left-lcm
relies on the so-called Cube condition ([Deh+15, Definition 4.14]):

Let M be a monoid with presentation ⟨X | xθ(x, y) = yθ(y, x)⟩ with θ is (poten-
tially partially defined) from X ×X to X. Suppose that, for all x, y, z in X, either both
θ(θ(x, y), θ(x, z)) and θ(θ(y, x), θ(y, z)) are undefined, or they are equal. Then M is left-
cancellative and admits left-lcm. In our case, θ(x, y) = x ∗ y satisfies the cube condition
by Lemma 1.3.0.3.

x

y

θ(x, y)

θ(y, x)

z

θ(z, x)

θ(x
, z

)

θ(z, y)

θ(y
, z

)

θ(θ
(x,
y),
θ(x
, z

)

θ(θ(x, z), θ(x, y)

θ(
θ(
y,
x)
, θ

(y
, z

)

θ(θ(y, z), θ(y, x)

Figure 2.1: The cube condition

In Figure 2.1, each edge represents a generator from X, each face corresponds to a
relation xθ(x, y) = yθ(y, x), and the cube condition is the fact that (when defined) the
cube closes at the top right, at the intersection of the top and right faces.
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2.2 Dehornoy’s class
In the introduction we mentioned that a special class of Artin–Tits groups (spherical type)
have finite quotients, Coxeter groups, obtained by adding to the usual group presentation
the fact that every generator is involutive (s2 = 1), and that this quotient corresponds
nicely with the Garside structure of the group (in particular the divisors of the Garside
element are in bijection with the Coxeter group). This quotient is then fundamental in
a lot of works as it allows to work in a finite group and then "lift" the results to the
Garside group (as first introduced in [Deh+15; BS72]), thus deserving the name of a
Germ ([Deh+15]).

We have seen that structure group of solutions are Garside groups, which was first
proved by Chouraqui in [Cho10]. Thus, the question of finding a quotient playing a
similar role appeared naturally. It was first obtained for special cases of solutions in
[CG14, Proposition 3.8] and then generalized in [Deh15] by constructing an integer d and
adding the relation ds = 1 (in the other notation s[d] = 1), the special case first obtained
then corresponding to d = 2.

The goal here is to follow the construction of the germ from [Deh15] mixing a brace
and monomial approach.

Fix a finite cycle set (S, ∗) of size n with structure monoid (resp. group) M (resp. G).
Recall from Proposition 1.6.0.11 that Soc(G) = Ker(λ) = Ker(ψ) is an ideal of the brace
G, in particular (Soc(G),+) = (Soc(G), ·).

Proposition 2.2.0.1. There exists a positive integer d such that for all s in S, ds is
diagonal, i.e. ds ∈ Soc(G).

In particular, for any positive integer k, k(ds) = (ds)k.

Remark 2.2.0.2. The smallest positive integer satisfying this condition is called the De-
hornoy’s class of S, and all the others will be multiples of this class. Our results will be
stated for the class, but they would work for any multiples. In this section we restrict to
Dehornoy’s class, however in Sections 3 and 4 considering a multiple ld of d with l > 1
will be crucial.

In [Deh15] the elements ks are denoted s[k] and, although the notation ks is nicer, we
will sometimes later have to use the power notation to avoid confusion when working in
the group ring Z[G].

Proof. First fix s ∈ S. The map sending ks to ψ(ks) is a map from an infinite (countable)
set to a finite one (N∗ → Sn), therefore it is not injective. So there exists k1 ̸= k2 ∈ N
such that λk1s = λk2s. We can assume k1 > k2 without loss of generality. Then from
Lemma 1.6.0.7 we get (k1s) · (k2s)−1 = k1s− k2s = (k1 − k2)s ∈ Soc(G)

Doing this for all s ∈ S, we get the existence of ds ∈ N∗ such that dss is diagonal. By
Proposition 1.6.0.11 Soc(G) is an ideal, so we must have for all k ∈ N k(dss) ∈ Soc(G).
Taking d = lcm(ds)s∈S we have for all s the existence of d′

s > 0 such that d = dsd
′
s, we

find that for all s, ds = d′
s(dss) ∈ Soc(G).

W show by induction that k(ds) = (ds)k: for k = 1 this is trivial. Then, as ds is in
Soc(G) = Ker(λ) = {g ∈ G | ∀h ∈ G, gh = g + h}, we have (k + 1)(ds) = ds + k(ds) =
ds+ (ds)k = ds · (ds)k = (ds)k+1, finishing the proof.
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Remark 2.2.0.3. In [Deh15, Lemma 5.4], the author obtained a bound on the class of a
cycle set as d ≤ (n2)!. Here, we obtain a first better bound d ≤ (n!)n given by the previous
proof (as d = lcm(d1, . . . , dn) with di ≤ n!). Improving this bound will be the focus of
Section 2.

Proposition 2.2.0.4. Let d be the class of S and denote by dG the subgroup of (G, ·)
generated by all the ds. Then dG is an ideal of G.

Proof. From Proposition 1.6.0.11 we have the ideal Soc(G) = Ker(λ) = {g ∈ G | ∀h ∈
G, gh = g + h} for which the group laws + and · coincides, so in particular (Soc(G), ·)
is abelian. As dG is a subgroup of (Soc(G), ·), and the latter is abelian, dG is a normal
subgroup. Moreover, by definition λds = id so λh = id for any h ∈ dG, in particular
λh(dG) = dG.

Thus we obtain a quotient brace G = G/dG.

Proposition 2.2.0.5 ([Deh15]). The following hold:

1. A presentation of G can be obtained by adding to the presentation of G the relations
ds = 1.

2. Matricially, quotienting is the same as specializing at z = exp(2iπ
d

), which we will
denote evz.

3. The quotient brace G has additive group (Z/dZ)S

4. G embeds as a subgroup of (Z/dZ)n⋊Sn, such that restricting to the first coordinate
is bijective. Equivalently we have a bijective 1-cocycle G → (Z/dZ)n associated to
the action of ψ−1.

5. The bijection Π: Zn → G induces a bijection Π: (Z/dZ)n → G.

Proof. The first point is the definition of G.
For the second one, we know by definition that dG is generated by the ds which are

in the socle, so they have trivial permutation. Thus quotienting by them just amounts to
setting Dd

s = 1, or equivalently zd = 1.
The third point then follows from the facts that (G,+) ≃ ZS (Theorem 1.6.0.12) and

(dG,+) identifies with (dZ)S inside ZS, thus (G,+) = (G,+)/(dG,+) ∼= ZS/(dZ)S =
(Z/dZ)S.

Then, by Corollary 1.5.0.22 we know that G embeds as a subgroup of Zn ⋊Sn such
that restricting to the first coordinate is bijective. Moreover, in this embedding, dG is
sent to (dZ)n⋊{1}. As (Zn ⋊Sn) /((dZ)n⋊{1}) ∼= (Z/dZ)n⋊Sn, this finishes the proof.

Finally let Π be the composition of Π with the projection G→ G. As Π: ZS → G is
a bijection by Proposition 1.5.0.23, Π is surjective. By (iii) we have #G = dn which is
also equal to #(Z/dZ)S, thus Π is bijective.

Remark 2.2.0.6. If d = 1 then dG = G so G is trivial. However, d = 1 means that all
the generators s are diagonal, i.e. s ∗ t = t for all s, t in S: this is just the special case
of the trivial cycle set. But the case d = 1 can be included as all our results hold for any
multiples of the class (thus any positive integer for d = 1).
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Example 2.2.0.7. Let S = {s1, . . . , sn} with ψ(si) = (12 . . . n) = σ for all i. Then
for any s ∈ S, k ∈ Z: ksi = Dk

sPσk . Thus Dehornoy’s class of S is equal to n. Let
ζn = exp(2iπ

n
), then G is generated by the si = diag(1, . . . , ζn, . . . , 1)Pσ.

From now on and everywhere in this thesis, we assume d ≥ 2.
Denote by ζd = exp(2iπ

d
) a primitive d-th root of unity and µd = {ζ id | 0 ≤ i < d}. Let

Σd
n be the subgroup of Monomn(C) with non-zero coefficients in {0} ∪ µd. Given k ≥ 1,

there is natural embedding ιdkd : Σd
n → Σdk

n sending ζd to ζkdk (as ζkdk = exp(2ikπ
dk

) = ζd).
From the previous proposition, we deduce the following result:

Corollary 2.2.0.8. The quotient group G is a subgroup of Σd
n.

Recall that if S has Dehornoy’s class d, then for any positive integer k we have that
kds is in the Socle, thus we could also consider the germ G/⟨kds⟩s∈S. The embedding
ιdkd (G) can then be seen as embedding the germ G in this bigger quotient group.

Definition 2.2.0.9. [Deh15] If (M,∆) is a Garside monoid with atom set S and G is
the group of fractions of M , a group G with a surjective morphism π : G → G is said
to provide a Garside germ for (G,M,∆) if there exists a map χ : G → M such that
π ◦ χ = IdG, χ(G) = Div(∆) and M admits the presentation

⟨χ(G) | χ(fg) = χ(f)χ(g) when ||fg||S = ||f ||S + ||g||S⟩

where || · ||S denote the length of an element over S = π(S).

Proposition 2.2.0.10 ([Deh15]). The specialization evd that imposes z = exp(2iπ
d

) pro-
vides a Garside germ of (G,M,∆d−1).

Proof. Consider the map χ : G → M defined by sending exp(2iπ·k
d

) to zk ∈ Q[z] for
1 ≤ k < d. As evd is defined by sending z to exp(2iπ

d
), we deduce evd ◦ χ = IdG. The

image of χ is the set of elements of M such that each non-zero coefficient is a power
of z strictly less than d, and thus identifies with Div(∆d−1) by the characterization of
left-divisibility (Proposition 2.1.0.2). And the presentation amounts to forgetting that z
is a root of unity, thus generating M as required.

To work over G, we will use the following corollary to restrict to classes of equivalence
over the structure monoid.

Corollary 2.2.0.11. The projection evd : M → G is surjective.

Proof. G is generated by all the elements of S, so its quotient G is also generated by S.
Moreover, as G is finite, inverses can be constructed from only positive generators, thus
the restriction G→ G to M .

Example 2.2.0.12. Let S = {s1, . . . , sn} with ψ(si) = (12 . . . n) = σ for all i. Then for
any s ∈ S, k ∈ Z: ksi = Dk

sPσk . The Dehornoy’s class of S is n and G is generated by
the si = diag(1, . . . , ζn, . . . , 1)Pσ where ζn = exp(2iπ

n
).

To recover G from G, one simply takes all the elements of G and forget that z is a root
of unity in the following sense: when computing the product of two elements and finding a
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coefficient za with a > d, we do not use that zd = 1 and just consider it as a new element.
So for instance in ⟨χ(G)⟩ with n = 4:

χ(3s1)χ(2s4) = χ(3s1)χ(2s4) =


0 0 0 z3

1 0 0 0
0 1 0 0
0 0 1 0




0 0 1 0
0 0 0 1
1 0 0 0
0 z2 0 0

=


0 z5 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 = 5s1.

Because 5 > 4, we obtain a new element different from χ (5s1) = χ (s1).

The quotient group G defined above is called a Coxeter-like group, it was first studied
by Chouraqui and Godelle in [CG12] for d = 2 and generalized by Dehornoy in [Deh15].

Fix G a Coxeter-like group obtained from a cycle set S of cardinal n and class d ≥ 2
(so that G is not trivial).

Definition 2.2.0.13. We define a function ld : {0, 1, . . . , d− 1} → {0, 1, . . . , ⌊d2⌋} by:

∀k ∈ {0, 1, . . . , d− 1}, ℓd(k) =
k, if k ≤ d

2
k − d, if k > d

2 .
(2.1)

Note that ℓd corresponds to ℓ with the projection Z→ Z/dZ but with representatives
in ] − d

2 ,
d
2 ] ∩ Z instead of [0, d − 1[∩Z. Because, if we have z6 = 1, the shortest way to

write z2 is z · z but to write z4 we should use z−1 · z−1 instead of z · z · z · z.

Proposition 2.2.0.14. Let g = ∑
s∈S

gss ∈ G with 0 ≤ gs < d. Let S = π(S).

The length ℓ of an element g ∈ G over S is given by ∑
s∈S

gs.

The length ℓd of an element g ∈ G over S ∪ S−1 is given by ∑
s∈S

ld(gs).

Proof. First recall that by Proposition 2.2.0.5 G has additive brace structure (Z/dZ)S.
Thus, an element of g has a unique expression g = ∑

s∈S
gss ∈ G with 0 ≤ gs < d.

Now, for the length over S, we can use s + t = sλ−1
s (t) from Proposition-Definition

1.6.0.4 to go from an additive to a multiplicative expression. Thus the additive and
multiplicative length are equal, and are the sum of the gs.

For the length over S ∪S−1, note that the shortest way to write k for k ∈ Z/dZ using
±1 is using 1 + · · ·+ 1 if k ≤ d

2 and otherwise, as d = 0, we write it as −1−· · ·−1. Doing
so for every term gs of g ∈ G, we obtain the result.

Corollary 2.2.0.15. For any g, h in G, we have ℓ(h) = ℓ(λg(h)).

Proof. If h = ∑
s∈S

hss with 0 ≤ hs < d, then by Proposition-Definition 1.6.0.4, λg(h) =∑
s∈S

hsλg(s) = ∑
t∈S

hλ−1
g (t)t. By Corollary 1.6.0.14, λg|S is a bijection. Thus

ℓ(λg(h)) =
∑
t∈S

hλ−1
g (t) =

∑
s∈S

hs = ℓ(h).
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Definition 2.2.0.16. We say that a word w over S = π(S) is reduced in G if it has length
ℓ(w) when seen as an element of G.

Remark 2.2.0.17. This means that if g = si1 · · · sik in G, and we use Proposition-
Definition 1.6.0.4 to rewrite it additively with st = s+ λs(t) so that g = ∑

s∈S
gss, then the

given expression is reduced when 0 ≤ gs < d for all s.

Remark 2.2.0.18. Corollary 2.2.0.11 tells us that M surjects in G, and Proposition
2.2.0.5 says that Π: ZS → G induces a bijection Π: (Z/dZ)S → G. Thus, we can adapt
"taking a Π-expression of an element in M" to G. We will say that we take a Π-expression
of g ∈ G to mean we chose any (t1, . . . , tk) in Sk such that g = Πk(t1, . . . , tk) with ℓ(g) = k.

Definition 2.2.0.19. For any g in G, we define its support as supp(g) = {s ∈ S | gs > 0,
where g = ∑

s∈S
gss with 0 ≤ gs < s.

Proposition 2.2.0.20. For any g in G, we have ℓ(g−1) = d · |supp(g)| − ℓ(g).

Proof. From Remark 2.2.0.17, write g = ∑
s∈S

gss with 0 ≤ gs < d, so that ℓ(g) = ∑
s∈S

gs.Let

h = ∑
s∈supp(g)

(d − gs)s ∈ G meaning that g + h = ∑
s∈supp(g)

ds = 0 ∈ G and ℓ(h) =

d · |supp(g)| − ℓ(g). Using Proposition-Definition 1.6.0.4 to rewrite h multiplicatively, we
obtain a reduced expression of h. Finally, g + h = gλ−1

g (h), and ℓ(λ−1
g (h)) = ℓ(h).

For Coxeter groups, we have the so-called exchange lemma (see [Mic14, Theorem 4.2]):
if (W,S) is a Coxeter system. We provide a similar result for Coxeter-like groups:

Lemma 2.2.0.21 (Exchange Lemma). Let s be in S and g in G . Write g = ∑
s∈S

gss with
0 ≤ gs < d. Then either sg is reduced (ℓ(sg) = ℓ(g) + 1) or gs∗s = d− 1 (i.e (d− 1)(s ∗ s)
left-divides g). Moreover, if it is not reduced, then sg = ∑

t∈S
t̸=s

gs∗tt.

Moreover, we can go from one reduced expression to another only using the quadratic
relations s(s ∗ t) = t(t ∗ s).

Proof. As the given expression of g is reduced, we know ℓ(g) = k. Remark 2.2.0.17
then tells us that ∑

s∈S
gs = k. Now, by Proposition-Definition 1.6.0.4 sg = s + λs(g) =

s+ ∑
t∈S

gtλs(t). Reindexing the sum by setting t = λ−1
s (u) = s ∗u for some u ∈ S, we have

g = s+ ∑
u∈S

gs∗uu.
This is reduced if and only if (sg)u < d for all u. Because g is reduced, we have

gs∗u < d, so this sg is reduced if and only if 1+gs∗s < d. Meaning that this is not reduced
precisely when gs∗s = d− 1. In this case, then (sg)s = d, and we conclude by ds = 0.

Moreover, assume we have two reduced expressions as g = si1 · · · sik and g = sj1 · · · sjk .
Using Proposition-Definition 1.6.0.4, we can rewrite both expressions as g = ∑

s∈S
gss and

this is unique by the commutativity of (G,+). This rewriting only involves st = s+λs(t) =
λs(t)+s = λs(t)λ−1

λs(t)(s) which preserves length. Moreover, by Corollary 1.6.0.14, we have
that the quadratic relations s1(s1∗s2) = s2(s2∗s1) are equivalent to s1λ

−1
s1 (s2) = s2λ

−1
s2 (s1).

Letting s = s1 and s2 = λs(t), we see that st = λs(t)λ−1
λs(t)(s) allows us to go from one

reduced expression to the other only with the quadratic relations.
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We conclude this subsection with a technical lemma which will be especially useful in
Section 4. We state it with the notation s[d] = ds, as it will be used in Section 4 to avoid
confusion in the group ring Z[G].

Lemma 2.2.0.22. For any s, t ∈ S the following hold:

(i) There exists ρs with ℓ(ρs) = d− 1 such that s[d] = sρs. Moreover ρs = (s ∗ s)[d−1].

(ii) ψ(ρs) = ψ(s)−1

(iii) s[kd] = (sρs)k

(iv) s[d]t = t(t ∗ s)[d]

(v) ρst = (s ∗ t)ρt∗s

(vi) ρs∗tρs = ρt∗sρt

(vii) (s ∗ t)[d]ρs = ρst
[d]

For simplicity we will write γks = ρss
[(k−1)d] = (s ∗ s)[kd−1] (giving sγks = s[kd]).

h) γks t = (s ∗ t)γkt∗s

i) γk1
s∗tγ

k2
s = γk2

t∗sγ
k1
t

In particular, when writing s[kd] = sg we have g = (s ∗ s)[kd−1] = ρss
[(k−1)d] = ρs(sρs)k−1.

This implies that, if s[d] = s1 . . . sd then (s[i])[d] = si . . . sds1 . . . sd−1.
Moreover, as all those equalities are true in G, they respect length and also hold in

Gk.

Proof. (i) is follows from Proposition 1.6.0.4: s[d] = s+ (d− 1)s = sλ−1
s ((d− 1)s).

(ii) follows from 1 = ψ(s[d]) = ψ(sρs) = ψ(s)ψ(ρs).
(iii) and (iv) follow from the definition of d as we have: s[kd] = (kd)s = k(ds) =

dsλ−1
ds (ds) . . . λ−1

(k−1)ds(ds) = (ds)(ds) . . . (ds) = (ds)k, and s[d]t = ds + λds(t) = t + ds =
t · (dλ−1

t (s)) = t · d(t ∗ s) = t(t ∗ s)[d].
For (v) we have sρst = s[d]t = t(t ∗ s)[d] = t(t ∗ s)ρt∗s, applying t(t ∗ s) = s(s ∗ t) and

canceling the s gives the result.
For (vi) we have ρs∗tρs = ρs∗t + λρs∗t(ρs) = ρs∗t + (d − 1)ψ−1(s ∗ t)(s ∗ s) = ρs∗t +

(d− 1)ψ(s ∗ t)(s ∗ s), from the cycle set equation, we have ψ(s ∗ t)(s ∗ s) = ψ(t ∗ s)(t ∗ s),
thus ρs∗tρs = ρs∗t + (d − 1)ψ(s ∗ t)(s ∗ s) = ρs∗t + (d − 1)ψ(t ∗ s)(t ∗ s) = ρs∗t + ρt∗s. By
symmetric, we conclude that this is equal to ρt∗sρt.

(vii) comes from (iv) applied on ρt = (t ∗ t)[d−1] and ψ(ρt) = ψ(t)−1.
(viii) is deduced from the previous ones: γks t = ρss

[kd]t = ρst(t ∗ s)[kd] = (s ∗ t)ρt∗s(t ∗
s)[kd] = (s ∗ t)γkt∗s

Similarly for (ix): γk1
s∗tγ

k2
s = ρs∗t(s ∗ t)[k1d]ρss

[k2d] = ρs∗tρst
[k1d]s[k2d] = ρt∗sρts

[k2d]t[k1d] =
ρt∗s(t ∗ s)[k2d]ρtt

[k1d] = γk2
t∗sγ

k1
t .
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2.3 Non-degeneracy
As mentioned above (Theorem 1.2.0.6), finite cycle sets are in bijective correspondence
with finite left non-degenerate involutive set-theoretical solutions. Rump showed ([Rum05,
Theorem 2]) that finite left non-degenerate involutive set-theoretical solutions are also
right non-degenerate by showing that the square map of a cycle set is bijective (logically
called the non-degeneracy of a cycle set). Dehornoy used this result in [Deh15] to be able
to transpose most results on right-multiplication to results on left-multiplication, which
does not provide a very explicit construction. Above we have adapted Dehornoy’s work
without Rump’s theorem, but we can also obtain said theorem.

Our proof, compared to Rump’s, is fairly short and a direct consequence of the I-
structure, whereas he needed several intermediate constructions (such as the retraction
of a solution, which we’ll mention later). We although use it to translate Dehornoy’s
left-multiplication statement into brace theory with explicit constructions.

Recall that we fix (S, ∗) a finite cycle set of size n with structure monoid (resp. group)
M (resp. G).

Definition 2.3.0.1. A finite cycle set is called non-degenerate if the diagonal map T
defined by T (s) = s ∗ s is a bijection of S.

Lemma 2.3.0.2 ([Rum05]). For any g, h in G, λ−1
g (g) = λ−1

h (h) if and only if g = h.

Proof. If g = h then trivially λ−1
g (g) = λ−1

h (h). Suppose λg(g) = λh(h), we want to show
gh−1 = 1. Also recall that, by Remark 1.6.0.2, in a brace, we have that 0 = 1.

From Lemma 1.6.0.7 we find:

gh−1 = −λg(λh−1(h)) + g = −λg(λg−1(g)) + g = −λg(λ−1
g (g)) + g = −g + g = 0 = 1.

From Lemma 2.3.0.2 we retrieve Rump’s theorem ([Rum05, Theorem 2]):

Theorem 2.3.0.3 (Rump’s theorem). Every finite cycle set is non-degenerate.

Proof. Let S be a finite cycle set. By Corollary 1.6.0.14, for any s ∈ S we have the
equality λs = ψ(s)−1. So by Lemma 2.3.0.2;

s ∗ s = t ∗ t⇔ ψ(s)(s) = ψ(t)(t)⇔ λ−1
s (s) = λ−1

t (t)⇔ s = t.

This means that T is injective, and as S is finite, T is bijective.

The following will be very useful to switch from working on the left to working on the
right when looking at divisibility:

Proposition 2.3.0.4. The followings hold:

(i) Let o be the order of T and k any positive integer. Consider the euclidean division of
k by o to write k = o · q + r, then we have ks = sT (s)T 2(s) . . . T k−1(s) = (os)q(rs).

(ii) The order o of T divides d. In particular, for any integer k and any s in S, we have
λ−1
ks (s) = T k(s) and kds = (sT (s) . . . T o−1(s))k.
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Proof. For the first point, as S is finite and T is injective by the previous lemma, it is
bijective and so has finite order.

The second point follows directly from an induction and Lemma 1.6.0.7: λ−1
(k+1)s(s) =

λ−1
ks+s(s) = λ−1

λ−1
ks

(s)(λ
−1
ks (s)) = λ−1

Tk(s)(T k(s)) = T k(s) ∗ T k(s) = T k+1(s). Then (k + 1)s =
ks+ s = ks ·λ−1

ks (s) = ks ·T k(s) = sT (s) . . . T k(s). As T is of order o, we can consider the
exponent i of T i(s) modulo o (T i±o(s) = T i(o)). Thus, if k = o · q + r, then (o · q + r)s =
(sT (s) . . . T o−1(s))qsT (s) . . . T r−1(s).

For the third point, T d(s) = λ−1
ds (s) = s as ds ∈ Soc(G).

This allows us to naturally obtain a cycle set structure on the transpose of the el-
ements of G and transform all statement on right-multiplication to statements on the
left-multiplication. In [Deh15] the statements with multiplication on the left are obtained
by abstractly and non-explicitly "dualizing" the operations.

Corollary 2.3.0.5. Let Gt be the set of transposes of the elements of G seen as matrices.
Then Gt is the structure group of a cycle set structure on St, the set of the transposes of
the elements of S seen as elements of Σn.

Explicitly ψ(st) = ψ−1(T−1(s)).

Proof. First note that, because G is generated by S, Gt is generated by St. As T is a
bijection, for each u the set St contains exactly one element st such that Dst = Du, that
is s = T−1(u). Moreover, as G is permutation-free, so is Gt. So by Theorem 1.5.0.24 it is
the structure group of a cycle set St.

Example 2.3.0.6. Let S = {s1, s2, s3} with ψ(s1) = ψ(s2) = ψ(s3) = (123) = σ. Then
sti = (DiPσ)t = P−1

σ Di = σDiP
2
σ , so for example

st2 =

0 1 0
0 0 z
1 0 0


t

=

0 0 1
1 0 0
0 z 0

 = D3P(132) = Dσ(2)P
−1
σ .

In particular, this can be used to work on the columns in G: if we want an element of
G with the coefficient za1 , . . . , zan read column by column, we can work in Gt, compute
n∑
i=1

aiT
−1(si) and transpose it to get the desired element in G.

Moreover, this also implies the easier characterization of divisibility in G:

Corollary 2.3.0.7. Let g, h be in M . Write g = ∑
s∈S

gss and h = ∑
s∈S

hss with gs, hs ∈ N.
Then g left-divides h if and only if gs ≤ hs for all s.
Similarly, g right-divides h if and only if gtst ≤ htst for all s, where st = T−1(s).

Corollary 2.3.0.8. Let g, h be in M . Write g = ∑
s∈S

gss and g = ∑
s∈S

hss with gs, hs ∈ N.
Then g ∧ h = ∑

s∈S
min(gs, hs)s and g ∨ h = ∑

s∈S
max(gs, hs)s.

Similarly g ∧r h =
(∑
s∈S

min(gtst , htst)st
)t

and g ∨r h =
(∑
s∈S

max(gtst , htst)st
)t

.

Proposition 2.3.0.9. For any k ∈ N, ψ(ks)(s) = T k(s). In particular, the map s 7→
ψ(ks)(s) is a bijection of S.
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Proof. We proceed by induction: for k = 0, T 0(s) = s = ψ(1)(s). For k = 1, T (s) =
s∗s = ψ(s)(s) by definition. Then suppose the equality holds for k ≥ 1. From Proposition
2.3.0.4 we know that (k + 1)s = ks · T k(s), so ψ((k + 1)s) = ψ(T k(s)) ◦ ψ(ks). Thus,
ψ((k + 1)(s))(s) = ψ(T k(s)) ◦ ψ(ks)(s) = ψ(T k(s))T k(s)) = T k+1(s).

Corollary 2.3.0.10. For any k in N and s in S, let t = (T k)−1(s) then −ks = (kt)−1.

Proof. Let t ∈ S, we have

(kt)−1 = (Dk
t Pkt)−1 = P−1

(kt)D
−k
t = ψ(kt)−1

D−k
t P−1

kt = D−k
ψ(kt)(t)P

−1
kt = D−k

Tk(t)P
−1
kt .

Thus, if t = (T k)−1(s), we find D(kt)−1 = D−k
s .

From Proposition 2.3.0.4 we have t = λkt(T k(t)), so

kt · (−ks) = kt+ λkt(−ks) = kt− kλkt(s) = kt− kλkt(T k(t)) = kt− kt = 0 = 1.

Proposition 2.3.0.11 ([Deh15]). The map (s, t) 7→ (s ∗ t, t ∗ s) is bijective.

Proof. As S is finite, so is S×S, so we only have to show injectivity. Assume s∗ t = s′ ∗ t′
and t ∗ s = t′ ∗ s′ for some s, t, s′, t′ ∈ S. Then, from s ∗ t = s′ ∗ t′ and s+ t = s(s ∗ t), we
have λs+tλ−1

s′+t′ = λs(s∗t)λ
−1
s′(s′∗t′) = λsλs∗tλ

−1
s′∗t′λ

−1
s′ = λsλ

−1
s′ . Thus λs+tλ−1

s′+t′(s′) = λs(s′∗s′).
As s + t = t + s = t(t ∗ s) we have by symmetry λs+tλ

−1
s′+t′(t′) = λt(t′ ∗ t′). Thus

(s+ t)(s′ + t′)−1 = −λs+tλ−1
s′+t′(s′ + t′) + (s+ t) = −λs(s′ ∗ s′)− λt(t′ ∗ t′) + (s+ t)

On the other hand, as s+ t = s(s∗ t), we have (s+ t)(s′ + t′)−1 = s(s∗ t)(s′∗ t′)−1s′−1 =
ss′−1 = −λsλ−1

s′ (s′) + s = −λs(s′ ∗ s′) + s.
Combining the above equalities gives −λs(s′ ∗ s′) + s = (s + t)(s′ + t′)−1 = −λs(s′ ∗

s′) − λt(t′ ∗ t′) + (s + t), thus we deduce t − λt(t′ ∗ t′) = 0, so t ∗ t = t′ ∗ t′ and by the
bijectivity of T we find t = t′. By the same symmetry argument we obtain s = s′, and
this concludes the proof.

2.4 Bounding the class
In this section, we study the behaviour of Dehornoy’s class. We provide conjectures on
the largest class for cycle sets of a fixed size, and prove it for particular cases. These
conjectures were obtained by a numerical study of solutions, using a computer, and we
provide our algorithms (in our case they were done using monomial matrices, as they
allow for quick and simple implementations).

We also relate divisors of Dehornoy’s class with other constants associated to a cycle
set (size, order of the permutation group, order of the diagonal map).

From now on, we fix a cycle set S of size n, structure group G, germ G and Dehornoy’s
class d.

One important object to consider is the Permutation group of a solution, denoted G0

in the seminal paper [ESS99].

Definition 2.4.0.1. The permutation group GS associated to a cycle set S is the subgroup
of Sn generated by ψ(si), 1 ≤ i ≤ n.

When the context is clear we will simply write G.
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G is precisely the image of the map sending g in G to Pg. Note that, as PσPτ = Pτσ, we
have that ψ(gh) = ψ(h)ψ(g), thus an anti-morphism (by sending g to ψ(g)−1 we obtain
a morphism). Equivalently, it is the image of the morphism given by the restriction
λ|S : (G, ·) → Aut(S) where we only consider the action of λ(G) on S. The kernel of
this restriction is the socle Soc(G), thus G = G/Soc(G). By Proposition 2.2.0.4, dG is a
subbrace of Soc(G), thus the quotient G→ G factors through G.

As a consequence we obtain the following result:

Proposition 2.4.0.2 ([Ced18]). The class d divides the order of G. In particular d divides
n!.

Moreover, d is the lcm of the additive orders of ψ(g) in (G,+).

Proof. For s ∈ S, the set {ks | k ∈ Z} is a subgroup of (G,+), and the smallest integer
ds such that dss is in the socle is exactly equal to the order of ψ(s) in (G,+), which thus
divides |G|. Thus the lcm of the ds also divides the order of G.

As d is the lcm of all the ds, s ∈ S, it also divides |G|.

The following is proved in [LRV22], allowing to restrict to orbits for computing the
class of a solution:

Proposition 2.4.0.3 ([LRV22, Lemma 6.1]). If s and t in S are in the same G-orbit,
then the additive orders of their permutations ψ(s) and ψ(t) are the same.

A very important class of solutions are the "indecomposable" ones, which have been
studied extensively and led to some classification results, such as it can be found in [ESS99;
CPR20; DPT24; ESG01].

Definition 2.4.0.4 ([Bha+21]). A subset X of S is said to be G-invariant if for every
s ∈ S, ψ(s)(X) ⊆ X.

S is called decomposable if there exists a proper partition S = X ⊔ Y such that X, Y
are stable under ∗, i.e. X ∗X = X and Y ∗ Y = Y . In this case (X, ∗|X ) and (Y, ∗|Y ) are
also cycle sets.

A cycle set that is not decomposable is called indecomposable.

Example 2.4.0.5. For S = {s1, s2, s3, s4} and ψ(s) = (12)(34) for all s, we have G =
⟨(12)(34)⟩ < Sn. We see that X = {s1, s2} and Y = {s3, s4} are both G-invariant and
their respective cycle set structure are given by ψX(s1) = ψX(s2) = (12) and ψY (s3) =
ψY (s4) = (34).

Note that S has size 4 and class 2, and both X and Y have size and class 2.

The following statement will be be useful

Proposition 2.4.0.6 ([ESS99, Proposition 2.11]). A cycle set S is indecomposable if and
only if its permutation group G acts transitively on S.

Using a python program based on the proof of Proposition 2.2.0.1 and the enumeration
from [AMV22], we can find the following maximum values of the class of cycle sets of size
n. We used the following algorithm to compute the class of a solution:
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Algorithm 1 Computing the class of a solution
Input: A cycle set (S, ∗).
Output: A couple (S, ∗) with a binary operation ∗

1: Set d := 1
2: for each s in S do
3: Set ds := 1
4: while λddss|S ̸= idS do
5: Set ds := ds + 1
6: Set d := dds
7: return d.

The idea of Algorithm 1 is that, if S = {s1, . . . , sn}, we find the smallest positive
integer d1 such that d1s1 is diagonal (has trivial permutation). Then, for s2 we look at
all multiples of d1s2, i.e. we look for the smallest positive integer d2 such that d1d2s2 is
diagonal, and so on. Doing so for all solutions of a fixed size, we obtain the following
values for the maximal class of solutions of a given size:

n 1 2 3 4 5 6 7 8 9 10
dmax 1 2 3 4 6 8 12 15 24 30

Figure 2.2: Maximal class for solutions of a given size

The sequence in Figure 2.2 corresponds to the OEIS sequence A034893 "Maximum
of different products of partitions of n into distinct parts", studied in [Doš05] where the
following is proved:

Lemma 2.4.0.7 ([Doš05, Theorem 3.1]). Let n ≥ 2 be written as n = Tm + l where Tm is
the biggest triangular number (Tm = 1 + 2 + · · ·+m) with Tm ≤ n (and so l ≤ m). Then
the maximum value

an = max
({

k∏
i=1

ni

∣∣∣∣∣k ∈ N, 1 ≤ n1 < · · · < nk, n1 + · · ·+ nk = n

})

is given by

an = aTm+l =


(m+1)!
m−l , 0 ≤ l ≤ m− 2
m+2

2 m!, l = m− 1
(m+ 1)!, l = m.

This leads to the following conjecture:

Conjecture 2.4.0.8. If S is of size n, its class d is bounded above by an and the bound
is minimal.

The next value we would expect for n = 11 = 10 + 1 = T4 + 1 (resp. n = 12 = 10 + 2
would be dmax(11) = (4+1)!

4−1 = 40 (resp. dmax(12) = 60).
The landau function g : N∗ → N∗ ([Lan03]) is defined as the largest order of a permu-

tation in Sn.
Recall, from [Rum05], that a cycle set S is called square-free when s ∗ s = s (i.e the

diagonal map T is the identity).
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Proposition 2.4.0.9. If S is of size n and is square-free and G is abelian then d ≤ an

That is, under these conditions the bound part of Conjecture 2.4.0.8 holds.

Proof. If S is square-free, then for all s ∈ S we have by definition T (s) = s, so by
Proposition 2.3.0.4 for any k ∈ Z, ks = sT (s) . . . T k−1(s) = sk. Thus {ks | k ∈ Z} is a
subgroup of (G, ·) and the smallest integer ds such that dss is in the socle corresponds
to the order of ψ(s) in (G, ·), which must divide e(G) the exponent of G (the lcm of the
orders of every element). So d will also divide e(G).

As G is abelian and finite, there exists an element with order equal to its exponent,
so the exponent is bounded by the maximal order of an element, i.e. d | e(G) ≤ g(n).

By the decomposition of permutations in disjoint cycles, g(n) is equal to the maximum
of the lcm of partitions of n:

g(n) = max ({lcm(n1, . . . , nk)|k ∈ N, 1 ≤ n1 ≤ · · · ≤ nk, n1 + · · ·+ nk = n})

Moreover, by properties of the lcm, if 1 ≤ ni = nj, as lcm(ni, nj) = ni, the max is
unchanged by replacing nj by only 1’s. And as the lcm of a collection is bounded above
by the product of the elements, we have g(n) ≤ an. Thus d ≤ g(n) ≤ an.

This result was then improved in [CR23]:

Proposition 2.4.0.10 ([CR23, Section 5]). The following hold:

• If G is cyclic, d ≤ g(n)

• If λg(g) = g for all g ∈ G (equivalently for all g ∈ G), then d ≤ g(n)

• If (G, ·) ≃
r∏
i=1

Z/pαi
i Z with non-necessarily distinct primes pi and such all pαi

i are
distinct, then d ≤ an

• We always have d ≤ 24n−1
3

In Appendix A) we will provide some histograms on the values of d for particular
classes of solutions.

In personal communications with R. Sastriques-Guardiola, the following conjecture
was mentioned:

Conjecture 2.4.0.11 ([Sas]). If S is indecomposable of size n, then d ≤ n.

Note that, as in Example 2.2.0.7, taking S = {s1, . . . , sn} with ψ(s) = (12 . . . n) for
all s provides an indecomposable cycle set that attains this bound.

In this direction the following was obtained in [CR23]:

Proposition 2.4.0.12 ([CR23, Corollary 5.12]). If S is indecomposable and G acts reg-
ularly on X (i.e without fixed point), then d ≤ n.

Moreover, if S is indecomposable and n is square-free, then d = n.

The following proposition, although a direct consequence of previous results, will pro-
vide useful relations between different integers associated to a solution.
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Proposition 2.4.0.13. We have the following divisibilities:

(i) o(T ) | d

(ii) d | #G

(iii) #G | dn

where o(T ) is the order of the diagonal permutation T , #G denotes its order |G| (to avoid
confusion with | for divisibility).

In particular, G→ G factorizes through G.

Proof. (i) is Proposition 2.3.0.4 and (ii) is Proposition 2.4.0.2.
For the last one, by definition dG ⊂ Soc(G), so G is a quotient of G by elements with

trivial permutation. Thus G↠ G factorizes through G, giving (iii).

Example 2.4.0.14. Let S = {s1, s2, s3, s4} with ψ(s1) = ψ(s2) = (34) and ψ(s3) =
ψ(s4) = (12). Then T = id and G = ⟨(12), (34)⟩. Moreover S is square-free so ks = sk

for all s ∈ S and k ∈ Z. Thus o(T ) = 1, d = 2 and #G = 4.

For a positive integer k, denote by π(k) the set of prime divisors of k. For instance
π(24) = {2, 3}.

Corollary 2.4.0.15. We have π(d) = π(#G).
In particular, d is a prime power iff #G is a prime power.

This means that our later results, which will involve the condition "d is a prime power"
can also be restated for #G.

Proof. As d divides #G (Proposition 2.4.0.2), any divisor of d is a divisor of #G. Con-
versely, if p is a prime divisor of #G then it divides dn and thus divides d.

Lemma 2.4.0.16. If S is indecomposable then n divides #G.
In particular, π(n) ⊆ π(#G) = π(d), and thus if d is a prime power then n is also a

power of the same prime.

Proof. By Proposition 2.4.0.6, we know that S is indecomposable iff G acts transitively
on S. By the orbit stabilizer theorem, for any s in S we have #Orb(x) = #G

#Stab(x) . So if S
is indecomposable there is a unique orbit of size n so n divides #G. The last statements
are a direct consequence of this divisibility and the previous corollary.

Lemma 2.4.0.17. If S is indecomposable and G is abelian, then n = |G|

Proof. 1 By Proposition 2.4.0.6, we know that S is indecomposable iff G acts transitively
on S. Let x0 ∈ S, by transitivity for all x ∈ S, there exists σ ∈ G such that x = σ(x0). Let
τ ∈ G be such that we also have x = τ(x0), we will show that τ = σ. For all y ∈ S, there
exists ν ∈ G such that y = ν(x), thus σ(y) = σ(ν(x)) = σ(ν(τ(x0)) = τ(ν(σ(x0)) = τ(y).
So an element of G is uniquely determined by its image of x0, thus |S| ≥ |G|, and the
other inequality follows by transitivity.

1https://math.stackexchange.com/a/1316138
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Let k ≥ 1 and denote by kG the subgroup of (G, ·) generated by kS = {ks | s ∈ S}.
The following result appears simultaneously in [Fei24, Proposition 2.13] and [LRV22,
Theorem B], the latter calling it "cabling":

Proposition 2.4.0.18. For k ≥ 1, kG is a left-ideal of G. Moreover, it induces a cycle
set structure on kS.

Explicitly, ψ(ks)(kt) = kλ−1
ks (t).

Proof. First note, as for any s, t ∈ S and g ∈ G, by Proposition-Definition 1.6.0.4,
ks + kt = ks · kλ−1

ks (t) ∈ kG and λg(ks) = kλg(s) ∈ kS. Thus, kG is a left-ideal of G, in
particular it is a subbrace by Proposition 1.6.0.11.

So we will construct the cycle set (kS, ⋆) so that it has naturally as structure brace kG.
Define ks⋆ts = ψ(ks)(t) = kλ−1

ks (t) = λ−1
ks (kt). We want to show that (ks⋆kt)⋆(ks⋆ku) =

(kt ⋆ ks) ⋆ (kt ⋆ ks).
We have (ks ⋆ kt) ⋆ (ks ⋆ ku) = λ−1

ks (kt) ⋆ λ−1
ks (ku) = λ−1

λ−1
ks

(kt)(λ
−1
ks (ku)).

The conclusion then follows from Lemma 1.6.0.8:

(ks ⋆ kt) ⋆ (ks ⋆ ku) = λ−1
λ−1

ks
(kt)(λ

−1
ks (ku)) = λ−1

λ−1
kt

(ks)(λ
−1
kt (ku)) = (kt ⋆ ks) ⋆ (kt ⋆ ku).

We can explicitly know the class of the cabling of a solution:

Proposition 2.4.0.19. Let k be a positive integer smaller than d, then (kS, ⋆) is of class
d

gcd(d,k) .
Moreover, ((d+ 1)S, ⋆) is the same, as a cycle set, as (S, ∗).

This means that this construction provides, at most, d different cycle sets.

Proof. By definition of (G,+), for any integer j and k, we have j(ks) = (jk)s. Thus a(ks)
is in the socle for every s if and only if ak is a multiple of d. So we deduce that kS is of
class lcm(d,k)

k
= d

gcd(d,k) .
By definition of d, we have that (dS, ⋆) is the trivial cycle set (all permutations are

trivial), thus ψ((d+ 1)S) = ψ(s).

Example 2.4.0.20. Consider S = {s1, s2, s3, s4} with ψ(s) = σ = (1234) for all s in
S. Then kS is given by ksi ⋆ ksj = ksσk(j), so that 2S has class 2 (all elements acts
by (13)(24))) and 4S is the trivial cycle set, while 3S has class 3 (all elements acts by
(1234)−1 = (4321) ) and is in fact isomorphic to S (by setting f that swaps (s4, s1) and
(s3, s2)).

Finally, we relate the class of a cycle set with the class of its retraction as defined in
[ESS99]:

Proposition-Definition 2.4.0.21 ([ESS99; Rum05]). The retraction of S is the quotient
set S ′ by the equivalence relation s ∼ t⇔ ψ(s) = ψ(t).

The cycle set structure on S naturally induces a cycle set structure on S ′. Moreover,
we also obtain a morphism of cycle sets S → S ′, and a morphism of braces G→ G′ from
the structure brace of S to the one of S ′.
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Lemma 2.4.0.22. Let d (resp. d′) be the Dehornoy’s class of S (resp. S ′). Then d′

divides d.

Proof. Let s be the equivalence classes in S ′ of s ∈ S. Then, from the fact that G→ G′

is a morphism of brace and that S is of class d, we have in G′

λds(t) = ds · t− ds = ds · t− ds = λds(t) = t.

This means that for all s, we have that ds is in the socle of GS′ . So d is a multiple of d′

(the smallest integer such that dG′ ⊂ Soc(G′)).

Example 2.4.0.23. Consider S = {s1, s2, s3, s4} with ψ(s1) = ψ(s3) = (12)(34) and
ψ(s2) = ψ(s4) = (14)(23). Then S ′ has two elements: t1 = {s1, s3} and t2 = {s2, s4}, and
both t1 and t2 act on S ′ by the permutation (12). For instance, t1 ∗ t2 = s1 ∗ s4 = s1 ∗ s4 =
s3 = t1, and this computation does not depend on the choice of representatives for t1 and
t2.

2.5 Zappa-Szép product and Sylows
In [Bac18; CCS20], the matched product of braces is defined, which is a way to take two
braces acting on each other by automorphism to construct a new one. In [BCJ16], a
method is given to construct, given a brace B, all solutions (X, r) such that G(X,r) ≃ B.
Combining these and classifying suitable families of braces could lead to a classification
of solutions. Both methods are algorithmically complex: the first relies on knowing the
automorphism group of a brace, the second on some parameters to be obtained in a
brace (additively generating set, families of subgroups of stabilizers). Also note that the
matched product is a brace version of the Zappa–Szép product ([Led73]), which is the
terminology we’ll use.

This approach can be improved by only considering braces that come from germs, i.e.
those with additive group (Z/dZ)n. To do so, we explicitly algorithmically highlight how
the Sylow subgroups of the germ decompose the cycle set into cycle set with prime power
classes. Then, we are able to obtain a condition, a simplified version of the matched
product condition, for which two germs can be multiplied to obtain a new solution with
class a divisor of the product of the original classes.

Recall that Σk
n, for k > 1, denotes the group of monomial matrices with non-zero

coefficients powers of ζk, and that ιklk is the embedding Σk
n ↪→ Σkl

n sending ζk to ζ lkl. Given
two subgroups H,K < G, their internal product subset is defined by HK = {hk | h ∈
H, k ∈ K}. If H and K have trivial intersection and HK = KH, the set product HK
has a natural group structure called the Zappa–Szép product of H and K. We apply this
to the Sylow-subgroups of the germs to obtain that any finite cycle set can be constructed
from the Zappa–Szép product of the germs of cycle sets of class a prime power.

Definition 2.5.0.1. Let k, l be integers such that k, l > 1. Let m be a common multiple
of k and l, with m = ka = lb for some a, b ≥ 1. Given two subgroups G < Σk

n, H < Σl
n

by G ▷◁m H we denote the subset ιmk (G)ιml (H) of Σm
n .

Identifying G and H with their image in Σm
n , we say that they commute ([Led73]) if

GH = HG as sets, i.e. for any (g, h) in G×H, there exists a unique (g′, h′) in (G×H)
such that gh = h′g′.
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Example 2.5.0.2. Consider A =
(
ζ2 0
0 ζ2

)
∈ Σ2

2 and B =
(
ζ3 0
0 ζ2

3

)
∈ Σ3

2. The least

common multiple of 2 and 3 is 6, thus

ι62(A)ι63(B) =
(
ζ3

6 0
0 ζ3

6

)(
ζ2

6 0
0 ζ4

6

)
=
(
ζ5

6 0
0 ζ6

)
∈ Σ6

2

Remark 2.5.0.3. This operation can be thought of as taking elements of G and H,
changing appropriately the roots of unity (with ζk = ζam and ζl = ζbm) and taking every
product of such elements (we embed G and H in Σm

n and take their product as subsets).
When k and l are coprime, G and H can be seen as subgroups of Σm

n with trivial
intersection, and so if they commute we have that G ▷◁m H is a group called the Zappa–
Szép product of G and H ([Led73], Product Theorem).

Let (S, ∗1), (S, ∗2) be two cycle sets, over the same set S, of coprime respective classes
d1, d2 and germs G1, G2. Let d = d1d2 and G = G1 ▷◁ d G2 (which, in general, is only a
subset of Σd

n), and we identify each Gi with its image in G.

Definition 2.5.0.4. S1 and S2 are said to be ▷◁-compatible if G is a germ of the structure
group of some cycle set which we’ll denote S1 ▷◁ S2.

If S1 ▷◁ S2 exists, let G be its structure group, ds its Dehornoy class and Gs its germ.
Note that we don’t require that G is exactly Gs. We only require that d = d1d2 is a
multiple of ds.

In Algorithm 2 we construct a candidate S1 ▷◁ d S2 for which G could be the germ.
This candidate is not, in general, a cycle set, but if it is, its class is a divisor of d. Then
we will state the condition for it to be a cycle set.

For clarity, we will put a subscript to distinguish between the respective structures of
S1 and S2: ψ1(s) will denote the permutation given by ∗1 and similarly ψ2(s) for ∗2.

Algorithm 2 Constructing S1 ▷◁ d S2
Input: A set S with two cycle sets structure ∗1, ∗2 on S of coprime classes d1, d2
Output: A couple (S, ∗) with ∗ a binary operation

1: Compute (u, v) the solution to Bézout’s identity d2u+ d1v = 1[d]
2: for i = 1 to n do
3: Compute g = usi ∈ G1
4: Let σ = ψ1(usi)
5: Compute h = vsσ(i) = vλ−1

g (si) ∈ G2
6: Let ψ(si) be the permutation of ιdd1(g1)ιdd2(g2)
7: return S1 ▷◁ d S2 = (S, ∗) with si ∗ sj = sψ(si)(j).

Remark 2.5.0.5. The heart of the algorithm is line 5 which relies on ks·kt = ks+kλks(t).
To obtain an element with diagonal part Dsi

, we have to take t = sσ(i) = λ−1
ks (si) with

here σ = ψ(ksi) and as we apply ιd on the elements (in S1 this does z 7→ zd2 and in S2
z 7→ zd1), we obtain Dsi

= Dd2u+d1v
i = Di from lign 1.

Example 2.5.0.6. Take two cycle sets of size n = 5 and class respectively 2 and 3, and
apply Algorithm 2 providing a candidate for a cycle set of class 6:
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Let S1 = {s′
1, . . . , s

′
5} and S2 = {s′′

1, . . . , s
′′
5}, with (S1, ψ1), (S2, ψ2) given by:

ψ1(s′
1) = ψ1(s′

3) = (1234) ψ1(s′
2) = ψ1(s′

4) = (1432) ψ(s′
5) = id

ψ2(s′′
1) = ψ2(s′′

2) = (354) ψ2(s′′
3) = ψ2(s′′

4) = ψ2(s′′
5) = (345)

Where S1 is of class d1 = 2 and S2 of class d2 = 3.
Consider their respective germs G1 and G2 of order 25 and 35. Then we define G =

G1 ▷◁ 6 G2 over the basis S = {s1, . . . , s5}. For instance we have:

ι62(s′
1) = ι62




0 ζ2 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1



 =


0 ζ3

6 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1



ι63(s′′
1) = ι63




1 0 0 0 0
0 1 0 0 0
0 0 0 0 ζ3
0 0 1 0 0
0 0 0 1 0



 =


1 0 0 0 0
0 1 0 0 0
0 0 0 0 ζ2

6
0 0 1 0 0
0 0 0 1 0


To construct an element g ∈ G with Dg = Ds3 we first solve Bézout’s identity modulo 6:
3u + 2v = 1[6], a solution is given by u = 1 and v = 2, so we will multiply some ι62(s′

i)
and ι62(2s′′

j ) so that their product has diagonal part D1
s3(D2

s3)2 = Ds3modz6. Recall that:

ks · kt = ks+ kλks(t).

Here we want s = λks(t) = s3, k = 3u and l = 2v, so we take s = 3. As σ = ψ(1s′
3) =

ψ(s′
3) = (1234), we have t = s′′

σ(3) = s′′
4, and note that 2s′′

4 = s′′
4s

′′
5. Finally:

ι62(s′
3)ι63(2s′′

4) =


0 1 0 0 0
0 0 1 0 0
0 0 0 ζ3·1

6 0
1 0 0 0 0
0 0 0 0 1




1 0 0 0 0
0 1 0 0 0
0 0 0 0 1
0 0 ζ2·2

6 0 0
0 0 0 1 0



=


0 1 0 0 0
0 0 0 0 1
0 0 ζ3+4

6 0 0
1 0 0 0 0
0 0 0 1 0

 =


0 1 0 0 0
0 0 0 0 1
0 0 ζ6 0 0
1 0 0 0 0
0 0 0 1 0


This will be our candidate for s3. Doing this for all the generators we find:

ψ(s1) = (124)(35), ψ(s2) = (1532), ψ(s3) = (1254), ψ(s4) = (132)(45), ψ(s5) = (354).

Unfortunately, this isn’t a cycle set: (s1∗s2)∗(s1∗s1) = s4∗s2 = s1 whereas (s2∗s1)∗(s2∗
s1) = s5 ∗s5 = s4. This also means that G is not a brace, as for instance s1 +s2 ̸= s2 +s1.

To verify that S1 ▷◁ S2 is a cycle set, an extra condition is needed:
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Proposition 2.5.0.7. If G1 and G2 commute, then S1 and S2 are ▷◁-compatible.

In this case, G = G1 ▷◁ d G2 is the Zappa–Szép product of G1 and G2. Note that this
would also work over any multiple of d, but we chose to restrict to d for simplicity (as
mentioned under Proposition 2.2.0.1 which defines the class).

Proof. As d1 and d2 are coprime, it follows that G1 ∩G2 = {1}.
By ([Led73], Product Theorem), G is a subgroup of Σk

n if and only if G1 and G2
commute, i.e. G = G1 ▷◁ d G2 = G2 ▷◁ d G1.

Now, d1 and d2 are coprime, so G1 and G2 have different (non-trivial) coefficient-
powers. Thus a product g1g2 of two non-trivial elements from ιdd1(G1) and ιdd2(G2) cannot
be a permutation matrix.

With Algorithm 2, we can construct elements s1, . . . , sn of G < Σd
n such that Dsi

=
Di = diag(0, . . . , 0, ζd, 0, . . . , 0). Now by Lemma 1.4.0.1 we have

si · ψ(si)(sj) = Dsi
Psi
Dψ(si)(sj)Pψ(si)(sj) = DiDjPsi

Pψ(si)(sj).

Similarly, sj · ψ(sj)(si) = DiDjPsj
Pψ(sj)(si). As G is permutation-free and Dsi·ψ(si)(sj) =

Dsj ·ψ(sj)(si), this implies that Psiψ(si)(sj) = Psjψ(sj)(si). This precisely means that S1 ▷◁ S2
is a cycle set.

Remark 2.5.0.8. To check whether G1 and G2 commute, we can restrict to the generators
and check that:

∀(s, t) ∈ S1 × S2,∃(s′, t′) ∈ S1 × S2 such that st = t′s′.

Proposition 2.5.0.9. If S1 and S2 satisfy the following "mixed" cycle set equation

∀s, t, u ∈ S, (s ∗1 t) ∗2 (s ∗1 u) = (t ∗2 s) ∗1 (t ∗2 u) (2.2)

then S1 and S2 are ▷◁-compatible and (S = S1 ▷◁ d S2, ∗) is a cycle set.

Let u, v be integers such that d2u+ d1v = 1[d1d2]. Explicitly, from Algorithm 2 gives
that ψ(si) = ψ2

(
vs′′

ψ1(us′
i)(i)

)
◦ ψ1 (us′

i).

Proof. Here we will work over monomial matrices as we do not yet have a Brace structure
on G.

We will use the previous Proposition 2.5.0.7 and show how Equation (2.2) naturally
arises from considering the commutativity of the germs. For clarity, although our two
cycle sets have the same underlying set S = {s1, . . . , sn}, we will distinguish where we see
those elements by writing s′ for (S, ∗1) and s′′ for (S, ∗2).

Let s′
i ∈ S1, s

′′
j ∈ S2, then in G:

s′
is

′′
j = Dd2

i Ps′
i
Dd1
j Ps′′

j
= Dd2

i D
d1
ψ1(s′

i)−1(j)Ps′
i
Ps′′

j
.

We want some s′
k ∈ S1, s

′′
l ∈ S2 such that s′

is
′′
j = s′′

l s
′
k, i.e:

Dd2
i D

d1
ψ1(s′

i)−1(j)Ps′
i
Ps′′

j
= Dd1

l D
d2
ψ2(s′′

l
)−1(k)Ps′′

l
Ps′

k
.
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As d1 and d2 are coprime, they’re in particular different, so we must have:
Dd2
i = Dd2

ψ2(s′′
l

)−1(k)

Dd1
ψ1(s′

i)−1(j) = Dd1
l

Ps′
i
Ps′′

j
= Ps′′

l
Ps′

k
.

(2.3)

From which we first deduce: k = ψ2(s′′
l )(i) and j = ψ1(s′

i)(l), or equivalently sk = sl ∗2 si
and sj = si ∗1 sl. So taking this k and l we get Ds′

is
′′
j

= Ds′′
l
s′

k
. We are left with the last

of the three conditions, which then becomes:

Ps′
i
Ps′

i∗1s′′
l

= Ps′′
l
Ps′′

l
∗2s′

i
.

As PσPτ = Pτσ, this is equivalent to

ψ2(s′
i ∗1 s

′′
l ) ◦ ψ1(s′

i) = ψ1(s′′
l ∗2 s

′
i) ◦ ψ2(s′′

l ).

As s′′
l ∈ S2, ψ2(s′

i ∗1 s
′′
l ) is seen as the action of an element of S2. Thus, the Equations 2.3

are equivalent to:

∀s, t, u ∈ S, (s ∗1 t) ∗2 (s ∗1 u) = (t ∗2 s) ∗2 (t ∗2 u).

Remark 2.5.0.10. The condition that the classes are coprime is used, with Bézout’s
identity, to have generators of the group G (elements with diagonal part Di). Otherwise,
say for instance that the classes are powers of the same prime, d1 = pa and d2 = pb with
b ≤ a. Then ιdd2 is the identity and ιdd1 will add elements with higher coefficient powers
(or equal), thus we do not get any new generators (or too many in the case a = b).

We’ve seen how to construct cycle sets from ones of the same size and coprime classes.
Now we show that this is enough to get all cycle sets from just ones of prime-power class:

Let d = pa1
1 . . . par

r be the prime decomposition of p (ai > 0 and pi ̸= pj), and write
αi = pai

i for simplicity. We use techniques inspired by [CJO22] to construct new cycle
sets from two with coprime Dehornoy’s class.

Fix again a cycle set S of size n and class d > 1, with germ G. By Proposition 2.4.0.18,
given k > 0 diving d, the subgroup kG generated by kS = {ks | s ∈ S} is the germ of a
structure group, and has for elements the matrices whose coefficient-powers are multiples
of k.

Lemma 2.5.0.11. Let βi = d
αi

then

(i) For each i, βiG is a pi-Sylow of G.

(ii) Two such subgroups commute (i.e. βiG · βjG = βjG · βiG).

(iii) G is the product of all those subgroups.
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Proof. (i) follows directly from the fact that βiG is a left ideal of G (Proposition 2.4.0.18),
and has order

#βiG = #G
(βi)n

= dn(
d
αi

)n = αni = pnai
i .

This is indeed a p-Sylow as #G = dn = (pa1
1 . . . par

r )n = pna1
1 . . . pnar

r .
For (ii), let g, h ∈ G and consider βig · βjh ∈ βiG · βjG. From Lemma 1.6.0.7 and

Proposition-Definition 1.6.0.4, we have βig ·βjh = βig+βjλβig(h) and denote h′ = λβig(h)
for simplicity. Then βig ·βjh = βig+βjh

′ = βjh
′ +βig = βjh

′ ·βiλβjh′(g) ∈ βjG ·βiG. We
conclude by symmetry to obtain the other inclusion βjG · βiG ⊆ βiG · βjG.

(iii) then follows by cardinality (#G =
r∏
i=1

#βiG), as the βiG are a family of commuting
Sylows for each prime pi dividing d.

Example 2.5.0.12. Checking the enumeration of solutions up to size 10 provided by
[AMV22], we find that the first example where S is indecomposable but has class product
of different primes is n = 8, d = 6 given by:

ψ(s1) = (12)(36)(47)(58), ψ(s2) = (1658)(2347),
ψ(s3) = (1834)(2765), ψ(s4) = (12)(38)(45)(67),
ψ(s5) = (1438)(2567), ψ(s6) = (1856)(2743),

ψ(s7) = (16)(23)(45)(78), ψ(s8) = (14)(25)(36)(78)

Here, G decomposes as the Zappa–Szép product 3G ▷◁ 6 2G of its 2-Sylow and 3-Sylow. If
we denote by (S2, ψ2) and (S3, ψ3) their respective cycle set structures then we find:

ψ2(s′
1) = ψ2(s′

2) = (1476)(2583),
ψ2(s′

3) = ψ2(s′
6) = (18)(27)(36)(45),

ψ2(s′
4) = ψ2(s′

5) = (1674)(2385),
ψ2(s′

7) = ψ2(s′
8) = (12)(34)(56)(78)

and

ψ3(s′′
1) = ψ3(s′′

3) = ψ3(s′′
5) = ψ3(s′′

7) = (135)(264),
ψ3(s′′

2) = ψ3(s′′
4) = ψ3(s′′

6) = ψ3(s′′
8) = (153)(246).

The associativity of multiplication of matrices ensure that the Zappa-Szép products of
germs is associative (see [Bri05, Section 3.14] for the general case). Then, Lemma 2.5.0.11
can be rephrased as G = β1G ▷◁ d . . . ▷◁ d βrG. As the germ can be used to reconstruct the
structure group and thus the cycle set, the following theorem summarizes these results
from an enumeration perspective, that is to construct all solutions of a given size.

Theorem 2.5.0.13. Any finite cycle set can be constructed from the Zappa–Szép product
of the germs of cycle sets of whose Dehornoy classes are powers of primes.

Proof. Any cycle set is determined by its structure monoid (the atoms are the generators,
with permutation equal to the left-action of the cycle set binary map ∗). And the structure
monoid can be recovered from the germ by Proposition 2.2.0.10. By Lemma 2.5.0.11 and
the above construction, the germ can be decomposed and reconstructed from its Sylows,
which also determine cycle sets by Proposition 2.4.0.18.
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Remark 2.5.0.14. As mentioned earlier, if one is able to construct all solutions in a
given size with prime-power class, the solutions with the same size and non prime-power
classes could then be constructed. This would still involve checking when two solutions are
compatible and to consider each solution up to isomorphism (which is simpler than brace
automorphism of the germ, as done in [Bac18]).

Remark 2.5.0.15. The class of the cycle set constructed will Algorithm 2 will, in general,
only be a divisor of the product of the prime-powers. This happens because nothing ensures
that, for instance, the cycle set obtained is not trivial: we only know that d1d2s is diagonal,
but it is not necessarily minimal.

When restricting to indecomposable cycle sets, the classification problem can be fur-
ther reduced:

Corollary 2.5.0.16. Any cycle set is induced (in the sense of using the decomposability
and Zappa–Szép product) by indecomposable cycle sets of smaller size and class, both
powers of the same prime.

More precisely, this "breaking down" of a cycle set, of size n and class d = pa1
1 . . . par

r ,
is as follows: First using Theorem 2.5.0.13 to split it into cycle sets (Si)1≤i≤r of size n and
class a power of pi. Then using Lemma 2.4.0.16 to decompose each Si into indecomposable
cycle sets of size and class both a power of pi (and the sum of their sizes equal to n).

Proof. From Theorem 2.5.0.13, let a cycle set S be obtained from its germ as an inter-
nal product of S1, . . . , Sr of classes respectively pa1

1 , . . . , p
ar
r with distinct primes. Then,

consider a decomposition of each Si as indecomposable cycle sets: so up to a change of
enumeration, the matrices in the structure group of Si are diagonal-by-block with each
block corresponding to a cycle set. Moreover, each of those cycle sets must have a class
that divides the class of Si, which is pai

i , thus their class is a power of pi. By Lemma
2.4.0.16, the size of those indecomposable cycle sets must also be powers of pi.

However, as far as the author knows, there is no "nice" way, given two cycle sets, to
construct all cycle sets that decompose on those two, thus the above result is an existence
result but not a constructive one, unlike the Zappa–Szép product previously used.

Remark 2.5.0.17. Starting from a cycle set, we first write it as a Zappa–Szép prod-
uct of its Sylows and then decompose each Sylow-subgroup if the associated cycle set is
decomposable. If one proceeds the other way, first decomposing and then looking at the
Sylows of each cycle set of the decomposition, we obtain less information. For instance,
if S = {s1, . . . , s6} with ψ(si) = (1 . . . 6) for all i, then S is not decomposable, but the
cycle sets obtained from its Sylows 2S and 3S are decomposable (ψ2(si) = (14)(25)(36)
and ψ3(si) = (135)(246) for all i, having respectively 3 and 2 orbits).

Example 2.5.0.18. In Example 2.5.0.12, S3 has to be decomposable as n = 3 does not
divide d = 8. Indeed, it decomposes as S3 = {s′′

1, s
′′
3, s

′′
5} ⊔ {s′′

2, s
′′
4, s

′′
6} ⊔ {s′′

7, s
′′
8}.

Using the enumeration of [AMV22] and Algorithm 1, for n = 10 we find that there is
approximately 67% of cycle sets that have class a prime-power (∼ 3.3millions out of ∼
4.9 millions). We hope that this number greatly reduces as n increases (as hinted by the
previous values, for n = 4 it is 99%), as more values of d are possible (See Conjecture
2.4.0.8).
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CHAPTER 3

Irreducibility of the monomial representations

In this section, we study the relation between the indecomposability of a cycle set and the
irreducibility of its monomial representation. Recall from Definition 2.4.0.4 that a cycle
set S is said to be indecomposable if there exists no proper partition S = S1 ⊔ S2 such
that S1 ∗ S1 = S1 and S2 ∗ S2 = S2. On the other hand for a group G, a ring R and a
R[G]-module V , a representation G → GL(V ) is said to be irreducible if there exists no
proper submodule W of V such that G ·W ⊆ W .

The motivation is that the representations of G and G, defined in Section 1, are mono-
mial. By [CR62, Corollary 50.4], any irreducible monomial representation is induced by a
character of a subgroup. Our goal is thus to study the irreducibility of the representations
Θ and Θ, and when they are induced by a character of a subgroup.

Here, we obtain that the indecomposability of a cycle set is equivalent to the irre-
ducibility of the representation Θ. For the irreducibility of Θ on the germ we have to
restrict to the cases where the Dehornoy class is not 2 or 6. We provide a counterexample
for d = 2, but the case of finding a counterexample for d = 6 remains open. Moreover, we
show that when considering a larger germ, namely Gl = G/⟨lds⟩ there is an equivalence
between irreducibility of the representation and indecomposability of the solution.

All along this section, we fix a cycle set (S, ∗) of size n, of Dehornoy’s class d > 1,
with structure group G and germ G = G/⟨dS⟩.

The content of this section was obtained in joint work with C. Dietzel (LMNO, Caen)
and S. Properzi (VUB, Brussels).

3.1 Indecomposability and Irreducibility
In this section, we study the equivalences between the indecomposability of a cycle set
and the irreducibility of the monomial representations of its structure group and germs.

For any positive integer l, we denote by Gl the quotient G/⟨(ld)S⟩ and call it the l-germ
of G. In particular, we have G1 = G. Recall that we have the monomial representation of
the structure group Θ: G→MS(C(z)). By Proposition 2.2.0.5 we have that Gl is a brace
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Chapter 3. Irreducibility of the monomial representations

with additive structure (Z/ldZ)S and we have a monomial representation Θl : Gl →MS(C)
obtained by the specialization evld of z at ζld = exp(2iπ

ld
).

Recall, by Proposition 2.4.0.6, that S is indecomposable if and only if its permutation
group G acts transitively on S. As G is a quotient of both G and Gl, indecomposability
is also equivalent to a transitive action of the structure group (resp. germ) on S.

Proposition 3.1.0.1. Let l be a positive integer. Consider the following assertions:

(i) S is indecomposable

(ii) Θ: G→MS(C(z)) is irreducible

(iii) Θl : Gl →MS(C) is irreducible.

Then the followings hold:

a) (ii)⇔ (i)

b) If l = 1, then (iii)⇒ (i)

c) If l > 1, then (iii)⇔ (i).

Proof. We begin by showing that (ii) (resp. (iii) for l ≥ 1) implies (i). By contradiction,
suppose that S is decomposable and let K be C or C(z), say S = S1 ⊔ S2 with S1, S2 ̸∈
{∅, S}. This means that for any s in S, ψ(s)(Si) = Si. Then, the permutation matrix Ps
associated to ψ(s) stabilizes both subspaces C(z)S1 and C(z)S2 (resp. CS1 and CS2). As S
generates G (resp. Gl), any element of G (resp G) also stabilizes the two subspaces C(z)S1

and C(z)S2 (resp. CS1 and CS2). Thus, Θ (resp. Θl) would be reducible, a contradiction.
We now show that (i) (resp. (iii) for l > 1) implies (ii). Suppose that S is indecom-

posable. Let V be a non-trivial subspace of C(z)S (resp. CS) that is G-invariant (resp.
Gl-invariant). Let v = (vs)s∈S be a non-trivial vector in V , so there exists s such that
vs ̸= 0. As S is of class d, we have ds ∈ Soc(G) (i.e Θ(ds) is the diagonal matrix Dd

s).
Moreover, as l > 1, ds is non-trivial in Gl = G/⟨ldS⟩. Then, if we denote by (et)t∈S the
canonical basis of C(z)S (resp. CS), we deduce that Θ(ds)v − v = (zd − 1)vses (resp.
Θl(ds)v − v = (ζdld − 1)vses, which is non-zero as l > 1). In both cases, we obtain that
es is in V . As S is indecomposable, for any t ∈ S, there exists f ∈ G (resp. f ∈ Gl)
such that λf (s) = t. If f = ∑

u∈S
fuu, then f · s = zftt (resp. f · s = ζft

ld t), so t ∈ V . We
thus obtain that the canonical basis of the whole space is in V , so the representation is
irreducible.

Remark 3.1.0.2. For l = 1, the indecomposability of S does not necessarily imply the
irreducibility of Θ: G→MS(C).

Indeed, consider the case of Example 2.2.0.7 with n = 2: let S = {s, t} with ψ(s) =

ψ(t) the permutation that swaps s and t. Then S is of class 2 and Θ(s) =
(

0 −1
1 0

)
,

Θ(t) =
(

0 1
−1 0

)
= −Θ(s). These matrices are simultaneously diagonalizable over C (the

eigenvalues are ±i), and so the representation is not irreducible.
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3.2 Estimating the size of G(X)
Proposition 3.1.0.1 only gives that the irreducibility of Θ implies the indecomposability
of S. In this section, we obtain a sufficient condition for the reciprocal.

Let us assume that S is an indecomposable cycle set of size n and class d.
Proposition 3.2.0.1. If S is indecomposable and |G| < d

n
2 , then Θ is irreducible.

Note that, as G = G/Soc(G), we have |G| = |G|
|Soc(G)| = dn

|Soc(G)| . Thus

|G| < d
n
2 ⇐⇒ |Soc(G)| > d

n
2 .

Proof. Write S = {s1, . . . , sn} and let e1, . . . , en be the associated canonical basis of CS.

Let 0 ̸= V be a G-invariant subspace of CS with. Let v =


v1
...
vn

 ∈ CS be a non-zero vector.

We will show by induction on the number of non-zero coordinates of v that V = CS. If
there is only one i such that vi ̸= 0, then by rescaling and applying the transitivity of the
action of G on S, we obtain V = CS. Indeed, as vi is the unique non-zero coordinate,
v
vi

= ei. Then, by the indecomposability of S, for any 1 ≤ j ≤ n, there exists g ∈ G such
that λ−1

g (si) = sj. If g = ∑
sk∈S

gksk, we have g · ei = ζ
gj

d ej, so ej ∈ V . Thus we obtain that

the canonical basis of CS is in V , meaning that V = CS.
Otherwise, assume that v has at least two non-zero coordinates vi, vj with i ̸= j.

We will show that there exists g ∈ Soc(G), such that we have gi ̸= gj, when writing
g = ∑

sk∈S
gksk with 0 ≤ gi < d. This will imply that g · v − ζgi

d v has i-th coordinate

ζgi
d vi − ζ

gi
d vi = 0. As gi ̸= gj and vj ̸= 0, g · v − ζgi

d v has j-th coordinate ζgj

d vj − ζ
gi
d vj =

(ζgj

d − ζgi
d )vj ̸= 0 . For the other coordinates, say k ̸∈ {i, j}, we find that the k-th

coordinate of g ·v−ζgi
d v is (ζgk

d −ζ
gi
d )vk, which remains zero when vk = 0. Thus we strictly

decreased the number of non-zero coordinates of v, without obtaining a zero vector. Thus,
by induction, we conclude that V = CS.

By contradiction, suppose that for every g ∈ Soc(G), gi = gj. For any 1 ≤ k ≤ n, by
the transitivity of the action of G, there exists f ∈ G such that λf (sk) = si. Let l be such
that λf (xl) = xj, and as λf is a bijection we have l ̸= k. Then, as Soc(G) is an ideal, we
have λf (g) = ∑

si∈S
giλf (si) ∈ Soc(G). Thus

gk = (λf (g))i = (λf (g))j = gl.

This means that for every k, there exists at least one l ̸= k such that gk = gl. So an
element of Soc(G) (a diagonal matrix) has at most n

2 different entries on the diagonal, i.e.
|Soc(G)| ≤ d

n
2 , a contradiction.

Let p be a prime and n > 0. We can always uniquely factorize n = pvm with
v,m ≥ 0 and p ∤ m. Therefore we can define the p-valuation vp(n) as the exponent
v in such a factorization. On the other hand, there is a unique base p representation
n = ∑∞

i=0 aip
i with finitely many non-zero 0 < ai < p. We define the p-adic digit sum as

DSp(n) = ∑∞
i=0 ai.

We denote by P the set of prime numbers.
We will need the following result about the p-valuation of factorials:
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Lemma 3.2.0.2 ([Coh07, Lemma 4.2.8.]). For all n ≥ 0, we have vp(n!) = n−DSp(n)
p−1 .

Lemma 3.2.0.3. The following bound holds:

|G| ≤
∏
p∈P
p|d

p
n−1
p−1 .

Proof. Write G = G(X). By Corollary 2.4.0.15, for any p ∈ P , we know that p divides d
if and only if p divides |G|. Therefore, |G| = ∏

p|d p
vp(|G|). As G ≤ SX , we must have that

|G| divides |SS| = n!. Therefore, by Lemma 3.2.0.2, for p ∈ P we have

vp(|G|) ≤ vp(n!) = n−DSp(n)
p− 1 ≤ n− 1

p− 1 .

Thus,
|G| =

∏
p|d
pvp(|G|) ≤

∏
p|d
p

n−1
p−1 .

Definition 3.2.0.4. A group G is called solvable if there exists a finite series of normal
subgroups

1 = G0 ◁G1 ◁ · · ·◁Gk = G,

such that Gi−1 is a normal subgroup of Gi and Gi/Gi−1 is abelian for all 1 ≤ i ≤ k.

Proposition 3.2.0.5 ([CR62, Theorem 5.3]). If G is a solvable group and H ◁ G is a
normal subgroup, then G/H is solvable.

In [CR23] the following is indirectly obtained, as already mentioned in Proposition
2.4.0.10:

Proposition 3.2.0.6 ([CR23, Proposition 5.10]). Let S be a cycle set of size n. Then

|G| ≤ 24n−1
3 .

Proof. By [ESS99, Theorem 2.14], the structure group G is a solvable group. Thus, by
Proposition 3.2.0.5, we obtain that G = G/Soc(G) is solvable.

Moreover, in [Dix67, Theorem 3], it is shown that a solvable group of Sn has cardinal
at most 24n−1

3 . Thus, as G is solvable, |G| ≤ 24n−1
3 .

Theorem 3.2.0.7. Let S be an indecomposable cycle set of size n and class d, such that
d ̸∈ {2, 6}. Then Θ: G→MS(C) is irreducible.

Proof. We will show that if d ̸∈ {2, 6}, then |Soc(G)| > d
n
2 . We can then apply Proposition

3.2.0.1 to conclude that Θ is irreducible.
As |Soc(G)| > d

n
2 is equivalent to |G| < dn

d
n
2

= d
n
2 , we need to show that |G| < d

n
2 for

d ̸∈ {2, 6}.
First suppose that d ≥ 9. By Proposition 3.2.0.6, we know that |G| ≤ 24n−1

3 < 27n−1
3 =

3n−1. Moreover, dn
2 ≥ 9n

2 = 3n. Thus,

|G| < 3n−1 < 3n ≤ d
n
2 .
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Next, consider the cases of d ∈ {3, 5, 7}. By Lemma 3.2.0.3, as d is prime, we have

|G| ≤ d
n−1
d−1 ≤ d

n−1
2 < d

n
2 .

We are left with d ∈ {4, 8}. As 4 and 8 are powers of 2, by Lemma 3.2.0.3, we have

|G| ≤ 2n−1 < 2n < 4n
2 ≤ d

n
2 .

This finishes the proof.

Remark 3.2.0.8. For d = 2, we gave a counterexample in Remark 3.1.0.2. For d = 6,
our proof fails on the bound given by Lemma 3.2.0.3: we find that |G| ≤ 2n−13n−1

2 = 12n−1
2 ,

when we need |G| < 6n
2 .

We do not know whether there exists an indecomposable cycle set of class 6 such that
the representation Θ is not irreducible.

From the enumeration of [AMV22], one can check that for all indecomposable cycle
sets of size n ≤ 10 and class d = 6 the representation Θ is irreducible. To do so, we applied
[Ser77, Theorem 5], stating that a representation ρ of a finite group G is irreducible if
and only if 1

|G|
∑
g∈G
|Tr(ρ(g))|2 = 1.

From Lemma 2.4.0.16, we know that the prime divisors of the size of a cycle set are
divisors of its Dehornoy class. Thus, we know that no indecomposable cycle set of size
11 have class 6. Therefore, a cycle set of class 6 such that Θ is not irreducible should be
looked for in size n = 12 (then 16, 18, 24, ...).

3.3 Inducing the representations
By [CR62, Corollary 50.4], an irreducible monomial representation is induced by a char-
acter of a subgroup. So in this section, we explicitly construct a subgroup of G (resp. G)
and a character that induce the representation Θ (resp. Θ).

In this section we fix S an indecomposable cycle set of size n.
For details on representation theory of finite groups, we refer to [Ser77]. We’ll need

the following from this reference:
Let G be a group, R a commutative ring and V a finite dimensional R-module. A

representation ρ : G → GL(V ) is equivalent to a R[G]-module structure on V . We’ll
identify ρ with V endowed with the associated R[G]-module structure.

Proposition-Definition 3.3.0.1 ([Ser77, Chapter 7]). If H is a subgroup of G and V
is a R[G]-module, then the induced representation IndGHV is defined as the R[G]-module
R[G]⊗R[H] V .

If we denote by [G : H] the index of H in G, then rkRIndGHV = [G : H] · rkRW .
Moreover, for any R[G]-module W we have the following isomorphism

HomR[H](V,W ) ∼= HomR[G](IndGHV,W ),

obtained by sending f : V → W to f ∗ : R[G]⊗R[H] → W , where f ∗(g ⊗ v) = g · f(v).

We now chose an element s0 in S. We define G0 = {g ∈ G | λg(s0) = s0} and
Gl,0 = {g ∈ Gl | λg(s0) = s0}. Recall that we can write any element g in the structure
brace G as g = ∑

s∈S
gss.
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Lemma 3.3.0.2. Suppose S is an indecomposable cycle set. Then, for any s0 in S, we
have the equalities

[G : G0] = [G : Gl,0] = |S|.

Proof. The index [G : G0] (resp. [G : Gl,0] is the number of equivalence classes of G
modulo G0 (resp. Gl modulo Gl,0). So two elements of G (resp. Gl are in the same class
if they send s0 to the same element of S. As S is indecomposable, G (resp. Gl) acts
transitively on S by Proposition 2.4.0.6, we conclude that [G : G0] = [Gl : Gl,0] = |S|.

Proposition 3.3.0.3. The mapping

c0 : G→ Z; g 7→ gs0

satisfies the following property: for g ∈ G0, h ∈ G, we have

c0(gh) = c0(g) + c0(h).

In particular, the restriction c0|G0 is a morphism of groups.

Proof. By Proposition-Definition 1.6.0.4, we have gh = g + λg(h) = ∑
s∈S

gss+ ∑
s∈S

hsλg(s).
As g ∈ G0, we have λg(s0) = s0. Thus, c0(gh) = gs0 + hs0 = c0(g) + c0(h).

This means that, when restricting to G0, c0 is a morphism. Which implies that
c0(gh) = c0(g) + c0(h). The second statement of the proposition is now immediate.

By Proposition 3.3.0.3, we can define the character χ0 : G0 → C[z±1] ⊂ C(z) by
g 7→ zc0(g) = zgs0 .

Lemma 3.3.0.4. The character χ0 : G0 → C(z) induces a character χl,0 : Gl,0 → C.

Proof. With the specialization evld : C(z)→ C of z at ζd = exp(2iπ
ld

), we obtain a character
evldχ0 : G0 → C defined by g 7→ ζ

gs0
ld . Moreover, we have Gl = G/⟨lds⟩ and ldS ⊆

Soc(G) ⊆ G0. Thus χ0 factorizes as χl,0 through G0/⟨lds⟩. Furthermore, Ker(G0 →
Gl,0) = G0 ∩ Ker(G → Gl) = G0 ∩ ldG = ldG. Thus G0/⟨lds⟩ = Gl,0 and χl,0 is well-
defined.

We can now show that the monomial representations of indecomposable cycle sets are
induced:

Theorem 3.3.0.5. Let S be an indecomposable cycle set and s0 be an element of S.
Let (A,Γ,Γ0, ρ, α0, ω) be one of the followings:

a) (C(z), G,G0,Θ, χ0, z)

b) (C[z±1], G,G0,Θ, χ0, z)

c)
(
C, Gl, Gl,0,Θl, χl,0, ζld

)
, for l ≥ 1.

Then the monomial representation ρ : Γ→MS(A) is isomorphic to the induced repre-
sentation IndΓ

Γ0A seen as a A[Γ]-module.
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Proof. Consider A (resp AS) as the A[Γ0]-module (resp. A[Γ]-module) with its associated
structure coming from α0 (resp. ρ).

Define f : A → AS by a 7→ as0. We claim that f ∈ HomA[Γ0](A,AS). We need to
show that, for any g ∈ Γ0 and a ∈ A, f(g · a) = g · f(a). On the one hand, f(g · a) =
f(ωgs0a) = ωgs0as0. On the other hand we have g ·f(a) = g ·as0 = DgPg(as0) = Dg(as0) =
D
gs0
s0 (as0) = ωgs0as0, where we used that g ∈ Γ0 to have that Dg stabilizes s0 and then

that Dg acts on s ∈ S by Dgs
s .

By Proposition-Definition 3.3.0.1, f induces a morphism f ∗ ∈ HomA[Γ](IndΓ
Γ0A,A

S).
For any g = ∑

u∈S
guu ∈ Γ, let t = λ−1

g (s0), so that we have f ∗(g⊗1) = g ·f(1) = g ·s0 = ωgtt.
As S is indecomposable, by Proposition 2.4.0.6, we know that Γ acts transitively on S.
So for any s ∈ S, there exists g ∈ Γ such that f ∗(g ⊗ 1) = ωgss ∈ AS. As ω is invertible
in A, we obtain that f ∗ is surjective.

Moreover, by Proposition-Definition 3.3.0.1 and Lemma 3.3.0.2, we have:

rkAIndΓ
Γ0A = [Γ : Γ0] · rkAA = |S| = rkAAS.

As f ∗ is surjective, it must be an isomorphism, which finishes the proof.

Example 3.3.0.6. For n > 2, consider the cycle set S = {s1, . . . , sn} with ψ(si) =(
1 2 · · · n

)
= σ (i.e si ∗ sj = sσ(j)). We have seen in Example 2.2.0.7 that S is of

class n. Moreover, S has permutation group G = ⟨σ⟩ which acts transitively on S, thus
S is indecomposable. So, by Proposition 3.1.0.1, the representation Θ is irreducible. In
particular, |G| = |⟨σ⟩| is equal to the order of σ, so |G| = n < n

n
2 because n > 2. Thus

by Proposition 3.2.0.1, we have that Θ is irreducible. Moreover, by [Ser77, Theorem 5],
a representation ρ of a finite group G is irreducible if and only if 1

|G|
∑
g∈G
|Tr(ρ(g))|2 = 1.

We now apply this formula to the representation Θ:
For any g ∈ G, by Proposition-Definition 1.6.0.4, we have ψ(g) = λ−1

g = σℓ(g). Let
g ∈ G with g =

n∑
i=1

gisi with
n∑
i=1

gi = ℓ(g) and where 0 ≤ gi < d. By Corollary 1.6.0.15,

Θ(g) = Dg1
1 · · ·Dgn

n Pg = Dg1
1 · · ·Dgn

n P
ℓ(g)
σ where Di = diag(1, . . . , ζn, . . . , 1) with ζn on the

i-th place. So

Tr(Θ(g)) =


0, if ℓ(g) ̸= 0 mod n
n∑
i=1

ζgi
d , if ℓ(g) = 0 mod n

As Θ is irreducible, by [Ser77, Theorem 5] we have 1
|G|

∑
g∈G
|Tr(Θ(g))|2 = 1. We con-

clude that ∑
0≤a1,...,an<n

a1+···+an=0 mod n

|ζa1
d + · · ·+ ζan

d |
2 = nn.
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CHAPTER 4

Hecke algebras for set-theoretical solutions to the Yang–Baxter
equation

As mentioned in the introduction, the Iwahori-Hecke algebra is a deformation of the group
ring of a Coxeter group seen as a quotient of the group ring of the associated Artin–Tits
group. The Iwahori-Hecke algebras can then be used to construct all irreducible characters
of the Coxeter group ([GP00, Section 4.4, 8, 9]). As structure groups of solutions are
Garside groups, the question of defining a deformation of the group ring of the germ of
a solution naturally occurs. This is precisely the goal of this section: defining such an
object, showing it has property similar to the Coxeter case (natural basis, invertibility of
the generators, semi-simplicity), but also highlighting some differences between the two
objects. Moreover, when working to find a suitable definition, another object happened
to be studied: an Hecke algebra defined from a two-generator presentation of Z/nZ which
reminds of the ones defined for Complex Reflexion Groups ([RMB98, Proposition 4.22]).

Let (S, ∗) be a finite cycle set of size n with S = {s1, . . . , sn}, class d and structure
monoid (resp. group) M (resp. G). Because we are going to work over group rings, to
avoid the confusion when writing ds (it means different things in R[G] or G), we’ll use
the notation from [Deh15] as s[d] = ds in G. For a positive integer k we define the k-germ
of G by Gk = G/⟨s[kd]⟩s∈S which is in bijection with the divisors of the kd-th power of
the Garside element ∆. Moroever, for any element g in a group G, we denote by Tg the
associated generator in a group ring.

4.1 Finding the correct definition via a diagrammtic
approach

The first attempts to adapt the definition from Artin–Tits groups to Yang–Baxter struc-
ture groups would be to quotient R[G] by something of the form Ts[d] = ad−1Ts[d] + · · ·+
a1Ts+a0. However, apart from a specific case mentioned in the following subsections (the
unique non-trivial solution of size 2), this does not really work. Using the GAP package
GBNP to compute a non-commutative Gröbner Basis, shows that such quotient won’t
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have the correct dimension (it collapses, almost always identifying all generators).
For instance, the GAP code in Program 1 checks, for a chosen cycle set of both size

and class 3, that no intuitive definition works.

#Setup
LoadPackage (" GBNP ");
A:= FreeAssociativeAlgebraWithOne (Integers ,"a","b","c");
gens := GeneratorsOfAlgebra (A);
e:= gens [1];a:= gens [2];b:= gens [3];c:= gens [4];
q :=100;
words :=[e,a,b,c,a*a,a*b,b*b,b*c,c*a,c*c];
comb := Combinations (words );
Remove (comb ,1);
sComb := String (comb );
sComb := ReplacedString ( ReplacedString (

sComb ,"(1)*" ,"") ," < identity ... >" ,"e");
sCombx := ReplacedString ( ReplacedString (

ReplacedString (sComb ,"a","x"),"b","y"),"c","z");
sCombB := ReplacedString ( ReplacedString (

ReplacedString (sCombx ,"x","b"),"y","c"),"z","a");
sCombC := ReplacedString ( ReplacedString (

ReplacedString (sCombx ,"x","c"),"y","a"),"z","b");
combA := EvalString (sComb );
combB := EvalString ( sCombB );
combC := EvalString ( sCombC );
l:= Length (combA );
for i in [1..l] do
Print ("\r ");
Print(i ,"/" ,l);
x:= combA[i];y:= combB[i];z:= combC[i];
rels :=[a*c-b*b,b*a-c*c,c*b-a*a,

a*b*c-(q -1)* Sum(x)-q*e,b*c*a-(q -1)* Sum(y)-q*e,
c*a*b-(q -1)* Sum(z)-q*e];

KI:= GP2NPList (rels );
GB:= SGrobner (KI);
if DimQA(GB ,0)=27 then
Print ("\n");
Print(Sum(x));
Print ("\n");
Print(Sum(y));
Print ("\n");
Print(Sum(z));
Print ("\n");
PrintNPList (GB);
Print ("\n");
fi;
od;

Program 1: Checking dimensions of quotient algebras
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4.1. Finding the correct definition via a diagrammtic approach

To do this verification for S = {s, t, u}, ψ(s) = ψ(t) = ψ(u) = (stu) = σ, we consider all
relations of the form

Ts[d] = 2T1 +
∑
g∈G

1≤ℓ(g)≤2

as,gTg, as,g ∈ {0, 1} ⊂ Q

and Tt[d] = σ(Ts[d]),Tu[d] = σ2(Ts[d]) to retain the symmetry. Note that we chose a particular
specialization of the coefficients ai, as we expect the definition of the Hecke algebra to
work for all specializations. We then use the GBNP package functions to compute the
size of the quotient algebra (deduced from a non-commutative Gröbner basis). We are
interested in quotient algebras which are free of rank #G = 33 = 27, so that we can
have (Tg)g∈G as a basis. The only relation for which this happen is Ts[d] = 2T1, i.e. a
non-interesting deformation of the group ring Z[G]. It is also worth to note that, in most
cases, the quotient is small to the point that the generators (Ts)s∈S are identified.

This was tested for many small solutions, in particular the cyclic solutions such that
ψ(S) = σ ∈ Sn, leading to the alternative approach of Subsection 4.5. Thus the approach
had to be changed, and we are going to give a brief idea on how the current one was
obtained. The following approach was inspired by a talk given by L. Poulain d’Andecy
in Caen [Pou23].

For the Braids groups Bn, whose Coxeter groups are Sn (of type An−1), the generic
Iwahori-Hecke algebra can be defined by the diagrammatic relations as follows:

= (q − 1) + q

which can also be written as

− q = (q − 1) .

Intuitively, this means that we are "mostly" interested in the permutation associated
to the braid, which is related to the fact that the Coxeter group is Sn. In what follows,
we will explain the diagrammatical construction which gives the intuition of a "good"
definition of Hecke algebra.

Definition 4.1.0.1. Let n be a positive integer. Consider the 2n points in R2 with co-
ordinates (1, 0), . . . , (n, 0), (1, 1), . . . (n, 1). A family of n curves (Ci : [0, 1] → R2)1≤i≤n
is called a n-strand permutation diagram if there exists a permutation σ ∈ Sn such that
Ci(0) = (i, 1) and Ci(1) = (σ(i), 0).

In this case, Ci is called the i-th strand.
The inverse of σ will be called the permutation associated to the diagram. Equivalently,

the associated permutation can be read as the permutation obtained looking at the diagram
from bottom to top.
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Two such diagrams are said to be equivalent if they define the same permutation.

Example 4.1.0.2. The following is a 4-strand permutation diagram with associated per-

mutation
(

1 2 3 4
2 3 4 1

)
= (1234):

1 2 3 4

1 2 3 4

If we have two n-strand permutation diagrams, we can stack one on top of the other
to obtain a new one (after rescaling vertically). This is illustrated in this example:

1 2 3 4

1 2 3 4

◦

1 2 3 4

1 2 3 4

=

1 2 3 4

1 2 3 4

∼

1 2 3 4

1 2 3 4

The associated permutation of the first (resp. second) diagram in the product is given by
(1234)−1 = (4321) (resp. ((12)(34))−1 = (12)(34)). And the permutation of their stacking
is (24)−1 = (24), which is also equal to (4321) ◦ (12)(34). The fact that the permutation
of the stacking is the product of the permutation holds in general, as indicated by the
following:

Proposition 4.1.0.3. There is an isomorphism between the group of n-strand permuta-
tion diagrams up to equivalence and Sn.

Proof. Consider the stacking of two diagrams with associated permutations respectively
σ and τ . The first diagram sends i to σ(i), and the second one sends σ(i) to τ(σ(i). So we
obtain that the permutation of the stacking is the product of the permutation. This im-
plies that, when considering diagrams up to equivalence (defining the same permutation),
the stacking operation is a group law: associativity is clear, the identity is the equivalence
class of diagrams with trivial permutation, and inverses are given by the equivalence class
of diagram with the inverse permutation. In other words, the map sending a diagram to
its associated permutation is a morphism.

Moreover, diagrams are considered up to the equivalence relation of defining the same
permutation. Thus there is a unique equivalence class of diagrams with trivial permuta-
tion, and so this morphism is an isomorphism.

Definition 4.1.0.4. Let Γ be a group. A Γ-marked permutation diagram is a permutation
diagram where strands can be marked anywhere by elements of Γ. There can be multiple
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ordered elements for one strand. Moreover, a marking by 1 ∈ Γ is considered equivalent
to no marking.

Two markings of one strand are equivalent if they are identified by the group law as
follows:

g

h
∼ gh

Example 4.1.0.5. We will later focus on Z and Z/dZ markings. As those groups are
cyclic, we can simplify the markings:

For Z, associate to +1 the marking by • and to −1 the marking by ◦. A marking by a
positive integer n then corresponds to n markings by •, and similarly for negative integers
with ◦.

For Z/dZ, we will only consider markings by • which corresponds to the class of +1.
The following is a Z-marked 3-strand permutation diagram, where the strand 1 to 3

are respectively marked by 2, 0 and -3:

Remark 4.1.0.6. We can always move all the markings to the top (or bottom) of a
strand. This also applies when stacking two diagrams, as illustrated in the following for
Z/3Z-marked 3-strand permutation diagrams:

· = ∼ ∼

where the equality is the stacking operation, the first equivalence is the equivalence of
permutation diagram, and the second equivalence is the fact that we have a Z/3Z-marking
(so • • • = 3• = 0)

Consider the action of Sn on Gn by permuting the entries, i.e. σ sends the i-th entry
to the σ(i)-th one, or, equivalently, σ · (g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)) .

Proposition 4.1.0.7. The group of Γ-marked n-strand permutation group is isomorphic
to Γn ⋊Sn, where Sn acts by permuting the entries of Γn.

Proof. Let (g1, . . . , gn, σ) be an element of Γn⋊Sn. Consider the map f sending such an
element to the permutation diagram associated to σ and where the i-th strand is marked
by gi.
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We have f ((g1, . . . , gn, σ)(h1, . . . , hn, τ)) = f(g1hσ−1(1), . . . , gnhσ−1(n), στ).
On the other hand, when stacking f ((g1, . . . , gn, σ)) and f ((h1, . . . , hn, τ)) from bot-

tom to top. The permutation associated to this diagram is στ by Proposition 4.1.0.3.
Moreover, the top diagrams has an i-th strand that is followed by the σ−1(i)-th strand of
the second diagram. Thus, the markings on the i-th strand of the diagram after stacking
is gihσ−1(i). From this, we deduce that f is a morphism.

Now, f ((g1, . . . , gn, σ)) is trivial if and only if the diagram has trivial permutation and
markings, so σ = id and g1 = · · · = gn = 1. This means that f is injective.

Finally, consider a diagram with associated permutation σ and markings g1, . . . , gn.
By the definition of f , the given diagram is equal to f(g1, . . . , gn, σ), meaning that f is
surjective. Thus f is an isomorphism.

We can finally arrive at a diagrammatical representation of structure groups and germs
of solutions, which corresponds to the I-structure of [ESS99; GV98] and Theorem 1.5.0.19.

Theorem 4.1.0.8. Let S be a cycle set of size n and class d. Then its structure group G
(resp. germ Gl) is isomorphic to a subgroup of Z-marked (resp. Z/ldZ-marked) n-strand
permutation diagrams. Moreover, an element is uniquely determined by its marking as a
diagram.

Proof. By Corollary 1.5.0.22, we know that G embeds as a subgroup of Zn ⋊ Sn such
that restricting to the first coordinate is bijective. Proposition 2.2.0.5 gives a similar
embedding of Gl in (Z/ldZ)n ⋊Sn. In both cases, we then apply Proposition 4.1.0.7 to
conclude.

Remark 4.1.0.9. A way to interpret the quotient G → Gl through the diagram is to
visualize the strands as having thickness in 3-dimensions, and consider the markings as
twists. In G, a marking as • = +1 ∈ Z can be seen as a twists by 2π

ld
. Then, quotienting

to Gl amounts to considering a full twist as trivial.

Now going back to the analogy with Artin–Tits group, where the focus to obtain the
Iwahori-Hecke algebra was the permutation associated to a braid. Here the permutation
of the braid is an obstacle when we only care about the number of circles/twists (the Γn
part). This is why we will consider deformations which only involves elements with trivial
permutation. so in our case using s[d]. For instance, the analogue of s2 = (q− 1)s+ q will
be s[d]2 = (q− 1)s[d] + q (where (s[d])2 = s[2d]). This means we will consider bigger germs,
like here G2 = G/⟨s[2d]⟩ to be able to obtain a Hecke algebra.

The visualization through marked permutation diagrams allows us to understand an
important difference between the Garside structures of Artin–Tits groups and Structure
groups of solutions to the Yang–Baxter equation. In particular, it yields the intuition on
why the "correct" definition will involve elements with trivial permutation.

4.2 Defining the Hecke algebra
We fix a cycle set (S, ∗) of size n, of Dehornoy’s class d, with structure group G and germ
Gl = G/⟨lds⟩ for some positive integer l.

Recall that, by Corollary 1.5.0.22 we have a set bijection, more precisely a bijective
1-cocycle, cp : G→ Zn. The inverse of this bijective 1-cocycle is also a bijective 1-cocycle
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cp−1 = Π: Zn → G which we studied in Section 1.5: we have Π(gh) = Π(g)λ−1
Π(g)(Π(h)).

In particular, if ψ(Π(g)) = 1, then Π(gh) = Π(g)Π(h). Moreover, by Proposition 2.2.0.5
Π induces a bijective 1-cocycle Π: (Z/ldZ)n → Gl

Let R be a ring, and note that R[Zn] = R[X±1
1 , . . . , X±1

n ] by identifying the generator
ei = (0, . . . , 0, 1, 0, . . . , 0) with Xi. The set map Π extends linearly to R[X±1

1 , . . . , X±1
n ]→

R[G], sending ∑
i
riX

i1
1 . . . X in

n to ∑
i
riΠ(s1, . . . , s1, . . . , sn, . . . , sn) for some finite indices i

and corresponding integers i1, . . . , in and coefficients ri.
We now proceed to construct the Hecke algebra as hinted before: we pick a polynomial,

apply it to s[d] and use the 1-cocycle Zn → G to show that we have a basis by showing
that the quotients of the associated group rings by appropriate ideals have the same
dimensions.

From now on, fix a polynomial P ∈ R[X] of degree l > 0 and set P (X) =
l∑

k=0
akX

k.

Remark 4.2.0.1. Recall that given an algebra A and R ⊆ A, elements of the two sided
ideal generated by R are of the form ∑

airibi, a finite sum where ai, bi ∈ A, ri ∈ R.

Lemma 4.2.0.2. Consider the two-sided ideals IP =
(
P (Xd

1 ), . . . , P (Xd
n)
)
⊂ R[Zn] and

JP =
(
P (s[d]

1 ), . . . , P (s[d]
n )
)
⊂ R[G]. Then Π induces a bijection IP → JP .

Proof. First remark that P sends a set of generators of IP to a set of generators of JP :

Π(P (Xd
i )) = Π

(∑
akX

kd
i

)
=
∑

akΠ
(
Xkd
i

)
=
∑

aks
[kd]
i =

∑
ak(s[d]

i )k = P (s[d]
i )

where we use that S is of class d with Proposition 2.3.0.4 to have s[kd]
i = (s[d]

i )k.
As Π: Zn → G is bijective, its linearization Π: R[X1, . . . , Xn]→ R[G] is bijective. But

Π is not a morphism (only a bijective 1-cocycle), so we can’t deduce that Π(P (Xd
i )) =

P (s[d]
i ) to obtain Π(IP ) ⊆ JP . However, we’ll use that Π is a 1-cocycle and S is of

class d, to deduce that, for any 1 ≤ i ≤ n and any f ∈ R[Zn], we have Π(Xd
i f) =

Π(Xd
i ) · λ−1

Π(Xd
i )(Π(f)) = s

[d]
i Π(f).

We’ll prove that Π(IP ) = JP by double inclusion:
Let Q1, Q2 ∈ R[Zn]. By the commutativity of R[Zn] = R[X1, . . . , Xn], we have that

Q1P (Xd
i )Q2 = P (Xd

i )Q1Q2 for any 1 ≤ i ≤ n. Moreover, as S is of class d and Π is
a 1-cocycle, we have Π

(
Xd
i (Xb1

1 . . . Xbn
n )
)

= s
[d]
i Π(Xb1

1 . . . Xbn
n ). Thus Π(Q1P (Xd

i )Q2) =
Π(P (Xd

i ))Π(Q1Q2) = P (s[d]
i )Π(Q1Q2), which is in JP as JP is an ideal. So we have

Π(IP ) ⊆ JP .
Now let f, g ∈ G. Then, by Lemma 1.6.0.8, we have for all g ∈ G that gs[d] =

λg(s[d])λs[d](g) = ψ(g)(s[d])g. Thus, in R[G], we have

fP (s[d]
i )g =

∑
akfs

[dk]
i g =

∑
ak(ψ(f)−1(si))[dk]fg.

Write t = (ψ(f)−1(si)) and let Y ∈ {X1, . . . , Xn} be such that Π(Y ) = t. As S is of class d,
we have Π−1(fP (s[d]

i )g) = ∑
akΠ−1(fs[dk]g) = ∑

akY
dkΠ−1(fg) = P (Y d)Π−1(fg), which

is in IP by Remark 4.2.0.1. We conclude that JP ⊆ Π(IP ).

Example 4.2.0.3. Let P (X) = 1 +X, g ∈ G and s ∈ S. Write Π(X) = s,Q = Π−1(g),
t = ψ(g)−1(s) and Y = Π−1(t). Then (1+g)(1+s[d]) = 1+s[d]+g+gs[d] = 1+s[d]+g+t[d]g =
(1+s[d])+(1+t[d])g = P (s[d])+P (t[d])g = Π(P (Xd))+Π(Y d)Π(Q) = Π(P (Xd)+P (Y d)Q).
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Thus (1 + g)(1 + s[d]) is an element of (P (s)) ⊂ JP , with preimage P (Xd) + P (Y d)Q
in (P (Xd), P (Y d)) ⊂ IP .

The following examples highlight why we need to take polynomials in Xd:

Example 4.2.0.4. Let (S, ∗) be the cycle set, with S = {s, t, u} and ψ(s) = ψ(t) =
ψ(u) = (stu) = σ. Then, from Example 2.2.0.7, we know that S is of class 3 and
s[3] = stu, t[3] = tus, u[3] = ust. Write R[Z3] = R[X, Y, Z] where Π(X) = s,Π(Y ) =
t,Π(Z) = u. Let P (x) = 1 + x2 and consider the ideals I = (P (X2), P (Y 2), P (Z2)) and
J = (P (s[2]), P (t[2]), P (u[2])).

Note that, for Ti ∈ {X, Y, Z} with 1 ≤ i ≤ k,

Π(T1 · · ·Tk) = Π(T1) · σ(Π(T2)) · · · · σk−1(Π(Tk))

as Π is a 1-cocycle. Or equivalently, for ti ∈ {s, t, u},

Π−1(t1 . . . tk) = Π−1(t1)Π−1(σ−1(t2)) · · ·Π−1(σ−k+1(tk)).

Now the element f = tt+ tstt = t(1+st)t ∈ R[G] is in J , as P (s[2]) = 1+s[2] = 1+st.
However, Π−1(tt) = Π−1(t)Π−1(σ−1(t)) = Π−1(t)Π−1(s) = Y X, and similarly Π−1(tstt) =
tΠ−1(u)Π−1(u)Π−1(t) = Y ZZY . Thus Π−1(f) = Y X + Y ZZY = XY + Y 2Z2, and we
claim that this is not an element of J .

To check that XY +Y 2Z2 ̸∈ J , suppose XY +Y 2Z2 = a(1+X2)+b(1+Y 2)+c(1+Z2)
with a, b, c ∈ R[X, Y, Z]. As we have no X2 terms, we deduce a = 0, thus XY + Y 2Z2 =
b(1 + Y 2) + c(1 + Z2). We have a XY which contains no square term, meaning that XY
appears in b or c. But there is no X in Y 2Z2, a contradiction.

We took polynomials in X2 instead of X3, and now an element of I does not come
from J . Thus the use of polynomials in Xd.

On the other hand , if instead of st we had an element g with trivial permutation (such
as g = stu), we would have Π−1(t(1 + g)t) ∈ J . Indeed, t(1 + g)t = tt+ tgt, and as g has
trivial permutation, the preimage of the blue t would have been the same as the preimage
of the red t, allowing for factorization by Π−1(tt). But with st, the blue t gets acted on,
preventing a factorization.

From now on, we fix P in R[X] of degree l > 0. We furthermore assume that al, the
leading coefficient of P , is invertible. We also fix the ideals IP ⊂ R[Zn] and Jp ⊂ R[G] as
in Lemma 4.2.0.2.

Let H(S, P ) = R[G]/JP . In H(S, P ) we thus have that

H(S, P ) = R[G]/
(
Ts[ld] =

l−1∑
k=0

−ak
al

Ts[kd]

)
. (4.1)

To distinguish between elements of G and their corresponding generator of the algebra,
we will write R[G] = R⟨Tg, g ∈ G | TgTh = Tgh⟩.

Lemma 4.2.0.5. The following hold:

(i) We have the isomorphism R[G] ∼= R⟨Ts, s ∈ S | TsTs∗t = TtTt∗s,∀s, t ∈ S⟩

(ii) For any g ∈ Gl, there is a well-defined element Tg ∈ H(S, P ) such that Tg =
Tsi1
· · ·Tsir

whenever si1 · · · sir (si ∈ S) is a reduced expression of g in Gl.
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(iii) For any g ∈ G with image g ∈ G, if ℓ(g) = ℓ(g), then the projection R[G]→ H(S, P )
sends Tg to Tg.

Proof. (i) follows from the definition of the group ring R[G] as the free module with basis
G such that TgTh = Tgh for any g, h in G.

For (ii), the Exchange Lemma 2.2.0.21 tells us that we can go from one reduced
expression to another only using the quadratic relations. By (i) those quadratic relations
are also the defining relations of a presentation of H(S, P ). Thus Tg does not depend on
the choice of a reduced expression.

Finally, for (iii), let g ∈ G and write g = si1 · · · sir so that ℓ(g) = r. Let g be the
projection of g in G, and assume that ℓ(g) = ℓ(g) = r. Then si1 · · · sir is a reduced
expression of g in G. Thus, by (ii), Tg = Tsi1

· · ·Tsir
is the projection of Tg.

Recall that,by Lemma 2.2.0.22, we have s[ld] = s · (s ∗ s)[ld−1] . Thus, Equation (4.1)
means that, in H(S, P ) we have

TsT
[ld−1]
s∗s =

l−1∑
k=0

−ak
al

Ts[kd] . (4.2)

Even though T [ld]
s is not defined in H(S, P ) from Lemma 4.2.0.5, we will often abuse

notation and write T [ld]
s instead of TsT [ld−1]

s∗s in H(S, P ).

Lemma 4.2.0.6. As an R-module, H(S, P ) is generated by {Tg}g∈Gl
.

In particular, this means that H(S, P ) is finite dimensional, and that its dimension is
bounded above by #Gl = (ld)n.

Proof. Let s ∈ S and g ∈ Gl. By Remark 2.2.0.17, either sg is reduced and then TsTg =
Tsg, or it is not reduced and (s ∗ s)[ld−1] ≺ g (g = (s ∗ s)[ld−1]h is reduced in G) by Lemma
2.2.0.21. Thus, if sg is not reduced, by Equation -4.2), we have TsTg = TsT

[ld−1]
s∗s Th =∑l−1

k=0
−ak

al
Ts[kd]h, where s[kd]h is reduced in Gl as k < l and g = s[ld−1]h is reduced.

Lemma 4.2.0.7. The quotient algebra R[Zn]/I is a free R-module of dimension (ld)n
and basis Xj1

1 . . . Xjn
n with 0 ≤ j1, . . . , jn < ld.

Moreover, the linearization of Π provides a bijection between this basis and Gl.

The bijection Π allows us to write an abuse of notation: by T [d]
s we will mean Ts[d] .

Proof. When quotienting R[X1, . . . , Xn] by P (Xd
i ), we can reduce all polynomials of de-

gree strictly greater than ld− 1. Meaning that R[Zn]/IP has a basis given by Xj1
1 · · ·Xjn

n

with 0 ≤ ji < ld.
By considering the powers of such a monomial, this basis is in bijection with (Z/ldZ)n.

By Proposition 2.2.0.5, Π gives a bijection (Z/ldZ)n → Gl, finishing the proof.

Theorem 4.2.0.8. H(S, P ) is a free R-module with basis {Tg | g ∈ Gl}, in particular it
has dimension (ld)n.
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Proof. From Lemma 4.2.0.5 we know that {Tg | g ∈ Gl} generates H(S, P ) as an R-
module, so in particular dimH(S, P ) ≤ (ld)n. We just have to show this family is free,
but this follows from Lemmas 4.2.0.2 and 4.2.0.7:

Suppose we have a linear combination ∑
g∈Gl

agTg = 0 in H(S, P ). By lifting the
elements g ∈ Gl to g ∈ G we have ∑g∈Gl

agTg ∈ JP . Then, applying Π−1 we obtain∑
g∈Gl

agΠ−1(Tg) ∈ IP . Projecting to R[Zn]/IP , this means that ∑g∈Gl
agΠ−1(Tg) = 0 ∈

R[Zn]/IP . From Lemma 4.2.0.7 the family Π−1(Tg) is a basis of R[Zn]/IP , so we must
have ag = 0 for all g ∈ Gl.
Remark 4.2.0.9. Note that in the above proofs we can take a different polynomial P for
each orbit of S under the action of G, as in proof of Lemma 4.2.0.2 we just need that two
elements are in the same orbit to obtain that Π(J) ⊆ I. If we denote such polynomials by
P = (Pi)1≤i≤n ∈ R[X]n with deg Pi = li and such that Pi = Pj whenever si and sj are in
the same orbit by the action of G, we obtain the Hecke algebra H(S, P ) with dimension
equal to ∏n

i=1(lid) which is the same as the order of the finite group G/⟨s[lid]
i ⟩1≤i≤n.

With the same reasoning we can also take a different d for each of those orbits, see
for instance [LRV22], but this will not be used in this thesis.

It was chosen to not consider those generalizations (except in Section 4.4) to avoid
heavy notation and make the proofs easier to read.
Corollary 4.2.0.10. Taking P (X) = X2 − pX − q with p, q ∈ R we obtain a definition
of an Hecke algebra for cycle sets with relations of the form

T [2d]
s = pT [d]

s + q

Example 4.2.0.11. Take S = {s1, . . . , sn}, σ ∈ Sn and ψ(si) = σ from Example 2.2.0.7.
Then S is of class d = o(σ) (the order of the permutation), and taking P (X) = X2−X−1
we get

H(S, P ) = R

〈
s1, . . . , sn

∣∣∣∣∣ sisσ(j) = sjsσ(i), 1 ≤ i < j ≤ n
(sisσ(i) · · · sσd−1(i))2 = sisσ(i) · · · sσd−1(i) + 1, 1 ≤ i ≤ n

〉

Remark 4.2.0.12. For all g ∈ G, by Proposition-Definition 1.6.0.4, we have λg(s[d]) =
(λg(s))[d]. So the action of G on R[G] stabilizes J the ideal generated by the P (s[d]),
meaning that G acts on H(S, P ). As ldG ⊂ Soc(G), the action of dG on J is trivial and
thus Gl acts on H(S, P ).
Remark 4.2.0.13. We see one important difference between Hecke algebras for Coxeter
groups and for Structure group of solutions: for a finite Coxeter group W with associated
Artin–Tits group A, one can view the Hecke algebra as a deformation of the quotient
R[A]→ R[W ]. However, with our approach for solutions, we have to consider the defor-
mation of a larger quotient R[G] → R[Gl] with l > 1 (if l = 1 then the relations are of
the form T [d]

s = −a0
al

, which is not an interesting deformation).
Moreover, It was shown by Coxeter in [Cox59] that the quotient Bn/⟨sk⟩ is finite if and

only if 1
n
+ 1
k
> 1

2 , thus for n ≥ 6 the quotient is finite only for k = 2 (the symmetric group).
This means that, in the case of Coxeter groups, we can only expect similar definitions of
Hecke algebra with polynomials of degree 2.

However here, we can work over any degree, which highlights the different behaviours
of the germs and associated Hecke algebra for Coxeter groups and structure groups of
solutions.
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We conclude the construction of the Hecke algebra for solutions by relating the Hecke
algebra of a solution with the Hecke algebra of its retraction. As in Proposition-Definition
2.4.0.21, we denote by S ′ the retraction of S. Then the class d′ of S ′ divides the class d
of S by Lemma 2.4.0.22. We deduce the following:

Proposition 4.2.0.14. We have a surjective algebra morphism

H(S, P (X))→ H
(
S ′, P

(
X

d
d′
))
.

Proof. The morphism G→ G′ linearly extends to R[G]→ R[G′]. By Proposition 2.2.0.1,
for any s ∈ S and any positive integer k, we have (s[d])k = s[kd]. Moreover, by Proposition
2.4.0.22 we know that d′ divides d, so (s[d′]) d

d′ = s[d]. Thus we get H
(
S ′, P

(
X

d
d′
))

=
R[G′]/

(
P
(
(s[d′]) d

d′
))

= R[G′]/
(
P
(
s[d]
))

. Thus R[G] → H(S ′, P (X d
d′ )) factors through

H(S, P ).

Example 4.2.0.15. If S is of class 4, S ′ of class 2, and we take P (X) = X2 + X + 1,
then we have a morphism H(S,X8 +X4 + 1)→ H(S ′, X8 +X4 + 1).

4.3 Anti-involution on the Hecke algebra
Recall that we fixed a cycle set (S, ∗) of size n, of Dehornoy’s class d, with structure group
G and germ Gl = G/⟨lds⟩. We fix a polynomial P in R[x], written as P (X) =

l∑
k=0

akX
k

with al invertible. In Section 4.2 we defined the Hecke algebra for cycle sets H(S, P ).
In this subsection, the goal is to endow H(S, P ) with an anti-involution derived from
the inversion in the group Gl, in parallel to what is known for finite Coxeter groups (see
[GP00, Exercise 4.8] for instance).

Proposition 4.3.0.1. Suppose a0, al are invertible in R. Then

T−1
s =

l∑
k=1

−ak
a0

T [kd−1]
s∗s .

Moreover (T−1
s )[d] = (T [d]

s∗s)−1.

Proof. From Lemma 2.3.0.4 we have, for any positive integer k, s[k] = s · (s ∗ s)[k]. We
will use this to check that

l∑
k=1

−ak

a0
T

[kd−1]
s∗s is indeed the inverse of Ts:

Firstly, Ts
(∑l

k=1
−ak

a0
T

[kd−1]
s∗s

)
= ∑l−1

k=1
−ak

a0
T [kd]
s + −al

a0
TsT

[ld−1]
s∗s . By Equation (4.2) we

have TsT [ld−1]
s∗s = ∑l−1

k=0
−ak

al
Ts[kd] . We conclude that

Ts

(
l∑

k=1

−ak
a0

T [kd−1]
s∗s

)
= −al

a0

−a0

al
+

l−1∑
k=1

(−ak
a0

+ al
a0

ak
al

)
T [kd]
s = 1.

Then, let X, Y ∈ R[Zn] be such that P (X) = s and Π(Y ) = s ∗ s. This means
that, for Y ′ = ∑l

k=1
−ak

a0
Y kd−1, we have Π(Y ′) = T−1

s and Π(Y ′d) = (T−1
s )[d]. By Lemma

2.2.0.22, we have ψ(Π(Y kd−1)) = ψ((s ∗ s)[kd−1]) = ψ(ρs(s ∗ s)[(k−1)d]) = ψ(ρs) = ψ(s)−1.
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Thus, in the sum for T−1
s , all the terms have the same permutation. Now, by Proposition

2.3.0.4 we can write s[d] = t1 . . . td where ti = ti−1 ∗ ti−1 and s = t1 = td ∗ td (and so
t
[d]
2 = t2 . . . tdt1). By Proposition 1.5.0.23, we know that Π is a 1-cocycle, meaning that

Π(Y ′Y ′) = Π(Y ′)λΠ(Y ′)(Π(Y ′)) = Π(Y ′)ψ(s)−1(Π(Y ′)). As ψ(s)−1(s ∗ s) = s, we have
ψ(s)−1(T [kd−1]

s∗s ) = T [kd−1]
s = T

[kd−1]
td∗td . Thus Π(Y ′Y ′) = T−1

t1 T
−1
td . By induction, we then

have Π(Y ′d) = T−1
t1 T

−1
td T

−1
td−1 . . . T

−1
t2 = (Tt2 . . . TtdTt1)−1 = (T [d]

t2 )−1.

Remark 4.3.0.2. One has to be careful that T−1
s ̸= Ts−1. Indeed, by Lemma 2.2.0.22

and Proposition 2.3.0.4, we have Ts−1 = Tρs = T
[ld−1]
s∗s , which is only one of the terms

occurring in T−1
s .

Example 4.3.0.3. Take R = Z[q±1] and the polynomial P (X) = X2 − (q − 1)X − q =
(X − q)(X + 1), which satisfies the hypotheses of Proposition 4.3.0.1. Then

T−1
s = 1− q

q
T [d−1]
s∗s + 1

q
T [2d−1]
s∗s .

Corollary 4.3.0.4. For any g in Gl, Tg has an inverse in H(S, P ).

Proof. If g = t1 . . . tr then the inverse of Tg = Tt1 · · ·Ttr is T−1
g = T−1

tr · · ·T
−1
t1 .

In a group G, the map ι sending an element to its inverse is an anti-involution, that is:
ι(gh) = ι(h)ι(g) and ι(ι(g)) = g. This anti-involution is known to extend to the generic
Iwahori-Hecke algebra in the case of Coxeter groups [GP00, Exercise 4.8]. We show that
the same holds for Hecke algebra of structure groups of solutions to the Yang–Baxter
equation, where the algebra is associated to the polynomial P (X) =

l∑
k=0

akX
k with al

invertible and l > 0.

Theorem 4.3.0.5. If P splits over R with (non-necessarily distinct) invertible roots
α1, . . . , αl, and if there exists an anti-involution ι : R→ R sending each αi to α−1

i .
Then ι extends to an anti-involution of H(S, P ) by sending Tg to T−1

g for g in Gl.

Proof. Denote by ι̃ the map H(S, P )→ H(S, P ) defined by ι̃( ∑
g∈Gl

cgTg) = ∑
g∈Gl

ι(cg)T−1
g .

We will need that ιmust send 1 ∈ R to 1: α−1
1 = ι(α1) = ι(1·α1) = ι(α1)ι(1) = α−1

1 ι(1),
thus ι(1) = 1.

By the hypothesis that P is split we have

P (T [d]
s ) = 0⇐⇒ al

l∏
k=1

(T [d]
s − αk) = 0 (4.3)

For the constant coefficient of P we have a0 = (−1)lal
∏l
k=1 αk, so al

a0
= (−1)l∏l

k=1 α
−1
k .

Multiplying Equation (4.3) by a0
al

(
(T [d]

s )−1
)l

yields

al
l∏

k=1
(−α−1

k )(T [d]
s )−1(T [d]

s − αk) = 0⇐⇒ al
l∏

k=1

(
(T [d]

s )−1 − α−1
k

)
= 0.

This means precisely that ι̃(P (T [d]
s )) = 0.
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Recall from Lemma 2.2.0.22 the notation γks = (s ∗ s)[kd−1] and that γk1
s∗tγ

k2
s = γk2

t∗sγ
k1
t .

Thus, by Proposition 4.3.0.1 we have

T−1
s∗tT

−1
s =

(
l∑

k=1

−ak
a0

Tγk
s∗t

)(
l∑

k=1

−ak
a0

γks

)
=
(

l∑
k=1

−ak
a0

γkt∗s

)(
l∑

k=1

−ak
a0

γkt

)
= T−1

t∗sT
−1
t

So ι̃(TsTs∗t) = (TsTs∗t)−1 = T−1
s∗tT

−1
s = T−1

t∗sT
−1
t = ι̃(TtTt∗s).

This shows that ι̃ is a well-defined anti-morphism H(S, P )→ H(S, P ).
It remains to show that ι̃ is an involution. For this, we will show that ι̃(ι̃(Tg)) is an

inverse of ι̃(Tg) = T−1
g , which will imply that ι̃(ι̃(Tg)) = Tg. As ι̃ is an anti-morphism, we

have ι̃(ι̃(Tg))ι̃(Tg) = ι̃(Tg ι̃(Tg)) = ι̃(TgT−1
g ) = ι̃(1) = 1. So ι̃(ι̃(Tg)) = Tg by unicity of the

inverse.
Moreover, by Theorem 4.2.0.8, (Tg)g∈G is a basis of H(S, P ). We conclude that ι̃ is an

anti-automorphism. Thus ι is an anti-involution.

Remark 4.3.0.6. In the above proof, one has to be careful that T−1
g ̸= Tg−1 as men-

tioned in Remark 4.3.0.2. For instance, for the involutivity of ι̃, it is not enough to
write ι̃(ι̃(Tg) = ι̃(T−1

g ) = (T−1
g )−1 = Tg. Indeed, for g = s ∈ S, we have ι̃(T−1

s ) =∑l
k=1 ι(−ak

a0
)ι̃(T [kd−1]

s∗s ) = ∑l
k=1 ι(−ak

a0
)ι̃(T [kd−1]

s∗s ), which does not so obviously simplify to Ts.

Example 4.3.0.7. Consider R = Z[q±1
1 , . . . , q±1

l , c±1]. Let P (X) = c(X − q1) . . . (X − ql)
which satisfies the hypothesis of the theorem. It is an analogue of the "generic Hecke
algebra" of a Coxeter group ([GP00]).

Taking as S = {s, t}, ψ(s) = ψ(t) = 12 with P (X) = (X+1)(X−q) = X2−(q−1)X−q,
we have T−1

s = 1−q
q
t[1] + 1

q
t[3].

We find (T−1
s )[2] = 1

q
T

[2]
t + 1−q

q
and (T−1

s )[4] = 1−q
q2 T

[2]
t + q2−q+1

q2 .
Thus

(T−1
s )[4] − (1

q
− 1)(T−1

s )[2] − 1
q

= 0

4.4 Semi-simplicity
This section is based on [CR90a; CR90b; GP00] and inspired from the lecture notes [Dig;
Mic98]. For details on character theory we refer to [CR90a]. In this section we fix a
commutative integral domain R with field of fractions F , K a field with an algebraic
closure K, f : R→ K a ring morphism. Let H = H(S, P ) be the Hecke algebra of a cycle
set S, as in Remark 4.2.0.9, with P = (Pi)1≤i≤n ∈ R[X]n, Pi(X) = ∑li

i=0 ai,kX
i such that

Pi = Pj whenever si and sj are in the same G-orbit. From Theorem 4.2.0.8, This algebra
dimension is equal to the order of the quotient group Gl = G/⟨s[lid]

i ⟩.

Definition 4.4.0.1. Let A be a non-trivial K-algebra. Then A is called

(i) simple, if it contains no proper two-sided ideal.

(ii) semi-simple, if it is isomorphic to a direct sum of simple algebras.

(iii) separable, if for any extension L/K, L⊗ A is a semi-simple algebra.
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(iv) split if, it is semi-simple and it is isomorphic to a finite sum of matrix algebras over
K.

An ideal I of an algebra is called nilpotent if there exists a positive integer n such
that In = 0, i.e. any product of n elements of I is 0. The following proposition helps us
characterizing semi-simple algebras:

Proposition 4.4.0.2 ([Bou22, Section 9]). Let A be a finite dimensional K-algebra. Then
there exists a unique largest nilpotent two-sided ideal, called the radical of A and denoted
rad(A).

Moreover, the following holds:

(i) rad(A) is the set of elements of A acting as 0 on every simple A-module (modules
without proper submodules)

(ii) rad(A) is the intersection of all maximal left ideals of A

(iii) A is semi-simple if and only if rad(A) = {0}

In the literature rad(A) is also often called the Jacobson radical of A.
If A is a finite-dimensional K-algebra and a is an element of A, then we denote by

TrA/K(a) the trace of the left-multiplication operator A→ A defined by b 7→ ab.
If L/K is a field extension, we denote by AL the L-algebra L⊗ A.

Lemma 4.4.0.3 ([CR90a]). Let A be a finite dimensional K-algebra, L/K a field exten-
sion. Then for any a in A, TrAL/L(1⊗ a) = TrA/K(a).

Moreover, TrAL/L is equal to id⊗ TrA/K defined by sending l ⊗ a to lTrA/K(a).

Proof. Let (ei) be a basis of A, so that (1 ⊗ ei) is a basis of AL. For a in A, write
aei = ∑

j
cijei, so that TrA/K(a) = ∑

i
cii. Then (1 ⊗ a)(1 ⊗ ei) = 1 ⊗ aei = ∑

j
cij(1 ⊗ ei),

meaning that TrAL/L(1⊗ a) = ∑
i
cii = TrA/K(a).

Moreover, for any x ∈ L, we then have (x⊗a)(1⊗ ei) = ∑
j
cij(x⊗ ei) = ∑

cijx(1⊗ ei).

Thus TrAL/L(x⊗ a) = x
∑
i
cii = xTrA/K(a).

The following lemma will be useful to restrict to the base field K when studying the
trace:

Lemma 4.4.0.4. Let A be a finite-dimensional K-algebra such that the bilinear map
T : A×A→ K defined by T (a, b) = TrA/K(ab) is non-degenerate. Then for any field exten-
sion L/K the bilinear map TL : AL⊗AL defined by TL((l1⊗a), (l2⊗b)) = TrAL/L(l1l2⊗ab)
is non-degenerate.

Proof. Let l⊗a ∈ L⊗A. As T is non-degenerate, there exists b ∈ A such that T (a, b) ̸= 0.
Then, by Lemma 4.4.0.3, we have TL((l ⊗ a), (1 ⊗ b)) = TL(l ⊗ ab) = lTrA/K(ab) ̸= 0.
Thus TL is non-degenerate.

Proposition 4.4.0.5 ([CR90a, Exercice 7.6]). Let A be a finite dimensional K-algebra.
If the bilinear form T : A × A → K defined with the usual trace T (a, b) = TrA/K(ab) is
non-degenerate, then A is separable (and thus semi-simple).
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Proof. First we know that non-degeneracy is stable by field extension by Lemma 4.4.0.4.
So it is enough to show thatA is semi-simple. AsA is finite dimensional, by Proposition

4.4.0.2 A is semi-simple iff rad(A) is trivial. Also from Proposition 4.4.0.2, rad(A) is the
largest nilpotent ideal, so any element in it has trivial trace (any element is nilpotent).
Thus as rad(A) is an ideal, if a ∈ radA then, for any b ∈ A we have ab ∈ rad(A) and so
TrA/K(ab) = 0. If T is non-degenerate, this implies that a = 0, finishing the proof.

Definition 4.4.0.6. A trace over a K-algebra A is a map τ : H → K such that τ(ab) =
τ(ba) for any a, b in K. A trace τ is said to be symmetrizing if the map (a, b) 7→ τ(ab) is
non-degenerate.

The following statement is a generalization of Lemma 4.4.0.4:

Proposition 4.4.0.7 ([Bro00, Proposition 8.7]). If A is a finite-dimensional algebra over
a field K and if τ is a symmetrizing trace over A that is a linear combination of characters,
then A is separable.

In particular, if TrA/K is symmetrizing, then A is separable.

Corollary 4.4.0.8 ([Dig, Exemple 2.10]). Let G be a group and K a field such that
char(K) does not divide |G|. Then the map τ : K[G] → K defined by τ( ∑

g∈G
rgTg) = r1

(where Tg is the standard basis of K[G]) is a symmetrizing trace and K[G] is separable.

Proof. We have that τ( ∑
g∈G

rgTg)(
∑
h∈G

r′
hTh) = τ( ∑

g,h∈G
rgr

′
hTgTh) = ∑

g∈G
rgr

′
g−1 = ∑

h∈G
r′
hrh−1 ,

so τ(ab) = τ(ba). Moreover, τ(TgT−1
g ) = τ(T1) = 1, so τ(( ∑

g∈G
rgTg)T−1

h ) = rh is zero for
every h if and only if rh = 0 for every h ∈ G. Thus τ is non-degenerate, and so it is
indeed a symmetrizing trace.

Then, the trace of the algebra K[G] is given on the basis (Tg) by

TrK[G]/K(Th 7→ Tgh) = #{h | Tgh = Th} =
#G, if g = 1

0, otherwise
= #G · τ(Tg).

Thus TrK[G]/K = #Gτ , which is not zero as char K does not divide #G. So τ = TrK[G]/K

#G is
a linear combination of character and finally, by Proposition 4.4.0.7, K[G] is separable.

Our goal is to be able to apply the following theorem:

Theorem 4.4.0.9 ([CR90b, Tits Deformation Theorem 68.17]). Let A be a finite dimen-
sional R-algebra, recall that we chose F = Frac(R) and f : R → K. If K ⊗R A and
F ⊗R A (defined by f) are separable, then they have the same numerical invariants.

Moreover, let R be an integral closure of R in K and f : R → K be an extension of
f . Then f induces a bijection of irreducible characters Irr(K ⊗ A)→ Irr(F ⊗ A).

Theorem 4.4.0.10. Let K be a field of characteristic p. Suppose that p does not divide d,
and p does not divide li for any i (the degrees of each polynomial). Let q = (qi,k)1≤i≤n,0≤k≤li
be a family of indeterminates such that qi,k = qj,k whenever si and sj are in the same orbit
and Pi(X) = ∑

i
ai,kX

k ∈ K[q][X]. Then K(q) ⊗ H(S, P ) is separable and has the same
numerical invariants as K[Gl].
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Proof. Consider the context of Theorem 4.4.0.9 with A = H(S, P ), R = K[q], F =
Frac(R) = K(q). We define f : R→ K by f(qi,0) = f(qi,li) = 1 and otherwise f(qi,k) = 0,
so that the specialization given by f yields the algebra K[Gl] = K[G]/(T [lid]

si
− 1).

First, by Corollary 4.4.0.8, K ⊗A = K[Gl] is separable when char(K) does not divide
#Gl =

n∏
i=1

(lid).
Then, as R is an integral domain, F = Frac(R) is a field, so F ⊗A = K(q)⊗H(S, P ).

We want to show that TrF⊗A/F is symmetrizing, so that we can apply 4.4.0.7 to have that
F ⊗ A is separable. By Theorem 4.2.0.8, (Tg)g∈Gl

is a basis of A = H(S, P ). So (1⊗ Tg)
is a basis of F ⊗ A. Moreover, TrF⊗A/F specializes to TrK[Gl]/K , which is symmetrizing
by Corollary 4.4.0.8. We have TrF⊗A/F ((1 ⊗ Tg)(1 ⊗ Th)) = TrF⊗A/F (1 ⊗ TgTh) = 1 ⊗
TrA/K(TgTh) by Lemma 4.4.0.3. As TrA/K specializes to TrK[Gl]/K which is non-degenerate,
TrF⊗A/F is also non-degenerate and thus symmetrizing.

The conditions of Theorem 4.4.0.9 are satisfied, meaning that F⊗A = K(q)⊗H(S, P )
and K ⊗ A = K[Gl] have the same numerical invariants.

Corollary 4.4.0.11. If H(S, P ) is defined over C[q], then C(q)⊗H(S, P ) and C[Gl] have
the same numerical invariants.

Moreover, we have a bijection Irr(C[Gl])→ Irr
(
C(l)⊗H(S, P )

)
.

Proof. We apply Theorem 4.4.0.9 with: R = C[q], A = H(S, P ), F = C(q), K = C = K

and K ⊗ A = C[Gl]. Theorem 4.4.0.10 already tells us that C(q) ⊗ H(S, P ) and C[Gl]
have the same numerical invariants. Moreover, as K = C = K, the last part of Theorem
4.4.0.9 says that the specialization H(S, P ) → C[Gl] induces a bijection Irr(C[Gl]) →
Irr(C(l)⊗H(S, P )).

4.5 Two-generated Cyclic group
At the beginning of Section 4.1, we mentioned how the naive definition of a Hecke algebra
does not work in general, and we developed a different approach that provides the ex-
pected results. However, we also mentioned that the naive approach does work for a very
particular solution of size. For this solution, the structure group is ⟨a, b | a2 = b2⟩ and
the germ is ⟨a, b | a2 = b2, ab = ba = 1⟩ ≃ Z/4Z with algebra R⟨Ta, Tb | T 2

a = T 2
b , TaTb =

TbTa = p(Ta + Tb) + q⟩ with some p, q in R. The goal of this section is to prove that in
this particular case, the Hecke algebra has a basis indexed by the germ.

Moreover, we study a family of groups for which this approach works: torus knot group,
which are the only knot groups (fundamental groups of complements of knots in the 3-
sphere) which are Garside groups ([DP99; Gob24; Gob23]). For n and m integers strictly
greater than 1, the n,m-torus knot monoid (resp. group) is defined by the presentation
Tn,m = ⟨a, b | an = bm⟩, and has as a Garside element ∆ = an = bm.

The goal of this section is to show that Tn,m has a Garside germ given by Tn,m =
Tn,m/⟨ab = ba = 1⟩ ≃ Z/(n+m)Z, and show that we have a Hecke algebra Hn,m(p, q) =
R⟨Ta, Tb | T na = Tmb , TaTb = TbTa = p(Ta + Tb) + q⟩, i.e. that (Tg)g∈Tn,m

is a basis of
Hn,m(p, q).

Proposition 4.5.0.1. Tn,m is a Garside group with germ Tn,m ∼= Z/(n+m)Z.
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Proof. It is shown in [DP99, Example 4] that, with the given presentation, Tn,m is a
Garside group, with a Garside element ∆ = an = bm and Div(∆) = {1, a, . . . , an =
bm, bm−1, bm−2, . . . , b}. The additive length ℓ : Tn,m → N can be obtained by setting ℓ(a) =
m, ℓ(b) = n, so that ℓ(an) = nm = ℓ(bm).

On the other hand,

Tn,m ≃ ⟨a, b | an = b
m
, ab = ba = 1⟩ ≃ ⟨a, b | an = b

m
, a = b

−1⟩ ≃ ⟨a | an = a−m⟩

≃ Z/(n+m)Z = {1, a, . . . , an = b
m
, b
m−1

, b
m−2

, . . . , b}.

Thus we have a bijection Div(∆)→ Tn,m sending a (resp. b) to a (resp. b).
Let ℓ be the induced map of ℓ in Tn,m, i.e. ℓ(a) = m, ℓ(b) = n.
To show that Tn,m is a Garside germ of Tn,m, we need to show that

Tn,m ∼= ⟨Tn,m | ∀g, h ∈ Tn,m, g · h = gh when ℓ(gh) = ℓ(g) + ℓ(h)⟩.

We will prove the isomorphism by showing that the presentation on the right reduces to
the presentation of Tn,m as ⟨a, b | an = bm⟩.

As {a, b} ⊂ Tn,m, Tn,m generates Tn,m. Now for the relations, we have to consider the
products aiaj, bibj and aib

j:
We have ℓ(ai) + ℓ(aj) = im + jm = (i + j)m for 1 ≤ i, j ≤ n. If i + j ≤ n, then

ℓ(aiaj) = ℓ(ai+j) = (i+ j)m. Thus we can omit ai for 2 ≤ i ≤ n from the generators. The
same holds for bj, as ℓ(bi) + ℓ(bj) = in + jn = (i + j)n = ℓ(bi+j), if i + j ≤ m. Thus we
can omit bi for 2 ≤ i ≤ m from the generators. The particular case of bbm−1 = b

m = an

with ℓ(bm) = nm = ℓ(an) recovers the relation an = b
m.

However, the longest length in Tn,m is ℓ(an) = ℓ(bm) = nm. So if i + j > n, ℓ(ai) +
ℓ(aj) = in + jn = (i + j)m > nm, so there is no relation for this case. The same also
holds for b whenever i+ j > m.

Finally, ℓ(ai) + ℓ(bj) = im + jn for 1 ≤ i ≤ n, 1 ≤ j ≤ m. But a = b
−1, so

ℓ(aibj) =
ℓ(a

i−j) = (i− j)m, if i ≥ j

ℓ(bj−i) = (j − i)n, if i < j
. In both cases this is smaller than im + jn, so

there is no relation.
From this, we conclude that the only relation left that occurs from Tn,m is an = b

m,
showing the desired result.

Now consider Hn,m(p, q) = R⟨Ta, Tb | T na = Tmb , TaTb = TbTa = p(Ta + Tb) + q⟩ for
some p, q in R.

Lemma 4.5.0.2. The following hold:

(i) In Hn,m(p, q) we have,

(a) TaT
k
b = pk−1q + pkTa +

k−1∑
i=1

(p2 + q)pk−i−1T ib + pT kb , for 1 ≤ k ≤ m

(b) TbT
k
a = pk−1q + pkTb +

k−1∑
i=1

(p2 + q)pk−i−1T ia + pT ka , for 1 ≤ k ≤ n

(ii) (Tg)g∈Tn,m
generates Hn,m(p, q)
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Proof. For (i) we proceed by induction on k. If k = 1, then TaTb = q+pTa+pTb = p1−1q+
p1Ta + pT 1

b (and the sum is empty). Now assume the equality holds for some 1 ≤ k < m,
then we have TaT

k+1
b = (TaT kb )Tb = (pk−1q + pkTa +

k−1∑
i=1

(p2 + q)pk−i−1T ib + pT kb )Tb =

pk−1qTb + pkTaTb +
k−1∑
i=1

(p2 + q)pk−i−1T i+1
b + pT k+1

b . We have pkTaTb = pk(pTa + pTb + q) =

pk+1Ta + pk+1Tb + pkq and we can rewrite
k−1∑
i=1

(p2 + q)pk−i−1T i+1
b =

k∑
i=2

(p2 + q)p(k+1)−i−1T ib .

Thus, rearranging the terms, we obtain TaT
k+1
b = pkq + pk+1Ta + pk−1qTb + pk+1Tb +

k∑
i=2

(p2 + q)p(k+1)−1−iT ib +pT k+1
b = pkq+pk+1Ta+

k∑
i=1

(p2 + q)p(k+1)−i−1T ib +pT k+1
b . A totally

symmetric argument holds for TbT ka .
For (ii), we can use that T n+1

a = TaT
n
a = TaT

m
b (resp. Tm+1

b = TbT
m
b = TbT

n
a ) and

the apply the relations of (1) to reduce terms of high enough exponents. Thus, with the
relations of (1), any product of generators can be reduced to linear combinations of the
family (Tg)g∈Tn,m

.

Theorem 4.5.0.3. The family (Tg)g∈Tn,m
is a basis of Hn,m(p, q). In particular Hn,m(p, q)

has dimension n+m.

The proof will follow a common strategy for Hecke algebra of finite Coxeter groups,
see [GP00, Theorem 4.4.6].

Proof. Consider E the free R-module with basis (eg)g∈Tn,m
. We are going to show that we

have an action of Hn,m(p, q) over E induced by Tge1 = eg and this will be enough. Indeed,
assuming we have a linear combination ∑

g∈Tn,m
rgTg = 0 then 0 = (∑g∈Tn,m

rgTg)e1 =∑
g∈Tn,m

rgeg and since E is free over (eg) we deduce that rg = 0 for all g.
We define the following action of Tn,m on E, and show that it induces an action of

Hn,m(p, q) on E:

• Taeak = eak+1 , for 0 ≤ k ≤ n− 1

• Taebk = pk−1qe1 + pkea +
k−1∑
i=1

(p2 + q)pk−i−1ebi + pebk , for 1 ≤ k ≤ m

• Tbebk = ebk+1 , for 0 ≤ k ≤ m− 1

• Tbeak = pk−1qe1 + pkeb +
k−1∑
i=1

(p2 + q)pk−i−1eai + peak , for 1 ≤ k ≤ n

In particular, Taean = Taebm = pm−1qe1 + pmea +
m−1∑
i=1

(p2 + q)pm−i−1ebi + pebm .
We will to show that this action respect the defining relations of Hn,m(p, q).
To verify that the action is compatible with the relation TaTb = p(Ta + Tb) + q, we

only need to consider the cases of TaTbebk and TaTbeak , as the cases of TbTaebk and TbTaeak

are obtained by symmetry. First assume that k < m, then, on one hand, TaTbebk =
Taebk+1 = pkqe1 + pk+1ea +

k∑
i=1

(p2 + q)pk−iebi + pebk+1 . On the hand, (pTa + pTb + q)ebk =

pTaebk + qebk +pebk+1 = pkqe1 +pk+1ea+
k−1∑
i=1

(p2 + q)pk−iebi +p2ebk + qebk +pebk+1 and those
are easily seen to be equal by just noticing p2ebk + qebk = (p2 + q)pk−kebk .
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Then, for k < n, we have TaTbeak = Ta(pk−1qe1 + pkeb +
k−1∑
i=1

(p2 + q)pk−i−1eai + peak) =

pk−1qea + pkTaeb +
k−1∑
i=1

(p2 + q)pk−i−1eai+1 + peak+1 and a bit of rearranging the terms (and
changing indices of sum) show that this is equal to Tbeak+1 = TbTaeak which, again by
symmetry, finishes the case k < n.

Now for k = m we have TaTbebm = TaTbean = Ta(pn−1qe1 +pneb+
n−1∑
i=1

(p2 +q)pn−i−1eai +
pean), so

TaTbebm = pn−1qea + pnTaeb +
n−1∑
i=1

(p2 + q)pn−i−1eai+1 + pTaean . (4.4)

On the other hand,

(pTa + pTb + q)ebm = pTaebm + pTbebm + qebm . (4.5)

The last term of Equation (4.4) and the first term of Equation (4.5) match, as an = bm.
So we have to show

pn−1qea + pnTaeb +
n−1∑
i=1

(p2 + q)pn−i−1eai+1 = pTbebm + qebn .

On the left we expand Taeb and on the right we expand Tbebn = Tbean , where we respec-
tively obtain

pnqe1 + pn+1eb +
n∑
i=1

(p2 + q)p(n+1)−i−1eai

and
pnqe1 + pn+1eb +

n−1∑
i=1

(p2 + q)p(n+1)−i−1eai + p2ean + qean

which also match as (p2 + q)ean = (p2 + q)p(n+1)−n−1ena .
For TbTaebm the computation is totally similar.
Then we can easily deduce that the relation T na = Tmb is compatible with the action:

T na eak = T ka ean = T ka ebm = T ka T
m
b e1 = Tmb T

k
a e1 = Tmb eak

The first equality is obtained by Taeak = eak+1 for k < n. The second one by an = bm.
The third equality is obtained by Tbebk = ebk+1 for k < m. The fourth one follows from
the fact that we’ve shown that TaTb = TbTa is respected by the action.

Similarly, we have

T na ebk = T na T
k
b e1 = T kb T

n
a e1 = T kb ean = T kb ebm = Tmb ebk .

Showing that the action ofHn,m(p, q) on E is well-defined, and thus finishing the proof.

We finish this section by relating this result with a well-known theory for Complex
reflection groups (CRG), following [RMB98]:
Definition 4.5.0.4. Let V be a complex vector space of finite dimension r.

A pseudo-reflection is a non-trivial element of GL(V ) that fixes an hyperplane in V .
A complex reflection group of rank r is a finite subgroup of GL(V ) generated by pseudo-

reflections. Moreover, a complex reflection group is called irreducible if it does not stabilize
any proper subspace of V .
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The classification of all irreducible complex reflection groups was obtained by Shephard
and Todd in [ST54], involving an infinite family G(de, e, r) with d, e, r positive integers,
and 34 exceptional cases G4, G5, . . . , G37. Moreover, the family of complex reflection
groups whose elements are real matrices correspond to finite Coxeter groups. Thus, they
are often seen as a natural generalization of finite Coxeter groups.

In [RMB98], the authors give a topological definition of the Hecke algebra of a CRG.
The authors then show that for the infinite family G(de, e, r), the Hecke algebra admits a
presentation with generators Ts associated to the pseudo-reflections generating the CRG,
and relations of two types: "braid-like" relations, and relations of the form (Ts−us,0)(Ts−
us,1) · · · (Ts − us,es) for some integer es.

As in the section we focused on the Garside group Tn,m of rank 2 with germ Tn,m ∼=
Z/(n+m)Z, we provide the statement of [RMB98] for the case G(k, 1, 1) ∼= Z/kZ:

Theorem 4.5.0.5 ([RMB98, Propositions 4.22-4.24]). For the Hecke algebra of Ck :=
Z/kZ we have

H(Ck) ∼= Z[u1, . . . , uk] ⟨T | (T − u1)(T − u2) · · · (T − uk) = 0⟩ .

The specialization of uj at exp
(
j 2iπ
k

)
induces a morphism H(Ck)→ C⊗ Z[Ck].

Moreover, H(Ck) is free of rank k, with basis {1, T, T 2, . . . , T k−1}.

Remark 4.5.0.6. It was remarked by Loïc Poulain-d’Andecy ([Pou]) that, if R = Z,
then Hn,m(p, q) is a specialization of H(Cn+m). Indeed, by Proposition 4.5.0.1 we have a
bijection between their respective basis given by T 7→ Ta and T n+m−1 7→ Tb. The relation
TaTb = p(Ta + Tb) + q can then be rewritten as T n+m = pT n+m−1 + pT + q. Taking a
specialization of (u1, . . . , uk) at the complex roots of Xn+m − pXn+m−1 − pX − q ∈ Z[X]
then induces a specialization H(Cn+m)→ Hn,m(p, q).
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APPENDIX A

Histograms for Dehornoy’s class

Note that the following histograms values are log-scaled. Each histogram is for a fixed
size n, and shows the number of solutions with a given class (in log scale).
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Figure A.1: All solutions

Figure A.1 is the basis for Figure 2.2 that leads to Conjecture 2.4.0.8.
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Figure A.2: Indecomposable solutions

Figure A.2 is the basis of Conjecture 2.4.0.11. In particular, one should note that the
possible classes are divisible by any prime divisors of n, as indicated by Lemma 2.4.0.16.
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Figure A.3: Irretractable solutions
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Figure A.4: Primitive solutions

Figure A.4 highlights the main result of [CJO22]:
A cycle set (S, ∗) is said to be primitive if its permutation group G acts primitively on

X, i.e. the action is transitive and does not preserve non-trivial partition of S.
By [CJO22, Theorem 3.1], a cycle set is primitive if and only if it isomorphic to the

solution of prime size p given by S = {s1, . . . , sp} with ψ(s) =
(
1 2 . . . p

)
for all s in

S.
Moreover, such a solution is of class p as shown in Example 2.2.0.7.
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Figure A.5: Square-free solutions
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Figure A.6: Solutions with abelian permutation group
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Figure A.7: Indecomposable solutions with abelian permutation group
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Figure A.8: Square-free with abelian permutation group

Figure A.8 corresponds to the cases covered by Proposition 2.4.0.9. We can see that
such solutions are approximately 1% of all solutions (see Figure A.1.
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Figure A.9: Solutions with cyclic permutation group

Figure 1.3 corresponds to the case obtained in [[CR23, Proposition 5.9]], as mentionned
in Proposition 2.4.0.10.
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Figure A.10: Indecomposable solutions with cyclic permutation group
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