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Abstract. We define a concept of Hecke algebra for structure groups of set-theoretical
solutions to the Yang–Baxter equation. As a comparison to Artin–Tits groups of spher-
ical type, we study some properties of this construction, while also highlighting some
differences that appear, which shows a difference between finite Coxeter groups and the
"Coxeter-like" group introduced by Dehornoy. We also relate this definition to known
constructions on solutions (retractions). Finally, we study a particular case related to
Torus Knot groups and Complex Reflexion groups.

Introduction

The study of involutive non-degenerate set-theoretical solutions to the Yang–Baxter
equation ([13, 14]) involves many different algebraic structures: cycle sets ([26]), braces
([4]), I-structures ([16]), etc. The structure group of a solution ([14]), was shown to be a
Garside group by Chouraqui ([6]). In [10], Dehornoy constructed a finite quotient of the
structure group, which plays a role similar to finite Coxeter groups for Artin–Tits groups
of spherical type ([2]). The construction of this finite quotient involves the existence
of a positive integer associated to each solution, usually denoted d and which we call
Dehornoy’s class. In this article, we are interested in this finite "Coxeter-like" group, with
the aim to understand both how it is similar and how it differs from finite Coxeter groups.

For an Artin–Tits group of spherical type A generated by S and with Coxeter group W ,
the generic Iwahori–Hecke algebra can be defined as a quotient of the group ring Z[q±1][A]
by the relations s2 = (q − 1)s + q for all s in S. This algebra has numerous interesting
properties: it has dimension |W |, the generators are invertible, it is semi-simple under a
suitable extension, etc. ([2, 17]). Here, we develop a theory of Hecke algebra for structure
group of involutive non-degenerate set-theoretical solutions to the Yang–Baxter equation.
We show that this algebra satisfies properties similar to the ones of Iwahori–Hecke algebras
of Artin–Tits groups of spherical type, while also highlighting how and why the definition
differs. To do so, we will rely on the fact that the structure group of a solution is a brace
([27, 4]), which in particular means that there exists an abelian structure on the structure
group G such that (G,+) ∼= (ZX ,+), and we denote by x[k] the element corresponding to
x+ · · · + x in ZX . We summarize our results from each section in the following:

Theorem. Let (X, r) be an involutive non-degenerate set-theoretical solution to the Yang–
Baxter equation of size n and Dehornoy’s class d. Denote G the structure group of (X, r)
and G2 = G/⟨x[2d]⟩x∈X its germ associated to 2d (two times Dehornoy’s class). For any
integral domain R, define the following R[q±1]-algebra:

H = R[q±1][G]
/〈(

x[d]
)2

= (q − 1) · x[d] + q,∀x ∈ X
〉
.
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Then the followings hold:
• (Theorem 2.8) H is a free R[q±1]-module with basis indexed by G2. In particular,

H has rank (2d)n.
• (Corollary 3.4) If Tg denotes the generator of H associated to an element g of G2,

then Tg is invertible.
• (Theorem 3.5) The anti-involution R[q±1] → R[q±1] that sends q to q−1 extends to

a well-defined anti-involution of H that sends Tg to T−1
g for any g ∈ G2.

• (Corollary 4.11) If R = C then C(q) ⊗ H is semi-simple, and there is bijection
between the irreducible characters of C(q) ⊗ H and the irreducible characters of
C[G2].

In this explicit version of our results, we chose the polynomial P (X) = X2−(q−1)X−q
to remind of the generic Iwahori–Hecke algebra of Coxeter groups, but our results hold
for any polynomial whose leading and constant coefficients are invertible.

In the first section we introduce the necessary definitions on braces that we will need.
In the second section the define of the Hecke algebra is introduced and we show it has

the expected dimension (equal to the cardinal of a Coxeter-like group).
In the third section, we explicitly construct an anti-involution on the Hecke algebras,

as is known for the case Iwahori–Hecke algebra for Coxeter groups.
In the fourth section, we provide an application of Tits’ Deformation Theorem, relating

Hecke algebras and group rings of Coxeter-like groups over a suitable field extension.
Finally, in the fifth section, we focus on a particular example where the naive defi-

nition does work, and relate it to known results about Complex Reflection Groups (a
generalization of finite Coxeter groups).

Moreover, in Appendix A, we explain how our definition of the Hecke algebra arises,
and why, in general, the naive definition (adapting the definition for Artin–Tits groups of
spherical type) doesn’t provide the expected properties.

1. Preliminaries

The goal of this section is to provide the basic definitions of the approaches used in this
article: cycle sets ([26]) and braces ([4]). We also give several technical lemmas that will
be used in the construction and the study of the Hecke algebras.

1.1. Cycle sets
Our basis object to study non-degenerate involutive set-theoretical solutions to the

Yang–Baxter equation are cycle sets, which were introduced by Rump ([26]).

Definition 1.1 ([26]). A cycle set is a set S endowed with a binary operation ∗ : S×S → S
such that for all s in S the map ψ(s) : t 7→ s ∗ t is bijective and for all s, t, u in S:

(s ∗ t) ∗ (s ∗ u) = (t ∗ s) ∗ (t ∗ u). (1)
When S is finite of size n, ψ(s) can be identified with a permutation in Sn.

When the diagonal map is the identity (i.e. for all s ∈ S, s ∗ s = s), S is called
square-free.

From now, we fix a cycle set (S, ∗).

Definition 1.2 ([26]). The group GS associated with S is defined by the presentation:
GS := ⟨S | s(s ∗ t) = t(t ∗ s), ∀s ̸= t ∈ S⟩ . (2)
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Similarly, we define the associated monoid MS by the presentation:
MS := ⟨S | s(s ∗ t) = t(t ∗ s), ∀s ̸= t ∈ S⟩+ .

They will be called the structure group (resp. monoid) of S.

Example 1.3. Let S = {s1, . . . , sn}, σ = (12 . . . n) ∈ Sn. The operation si ∗ sj = sσ(j)
makes S into a cycle set, as for all s, t in S we have (s∗t)∗(s∗sj) = sσ2(j) = (t∗s)∗(t∗sj).

The structure group of S then has generators s1, . . . , sn and relations sisσ(j) = sjsσ(i)
(which is trivial for i = j).

In particular, for n = 2 we find G = ⟨s, t | s2 = t2⟩.

When the context is clear, we will write G (resp. M) for GS (resp. MS).
We also assume S to be finite and fix an enumeration S = {s1, . . . , sn}.

Remark 1.4. By the definition of ψ : S → Sn we have that si ∗ sj = sψ(si)(j), which we
will also write ψ(si)(sj) for simplicity.

1.2. Braces
The structure group of a brace has an extra "ring-like" structure, which was first intro-

duced by Rump in [27] as linear cycle sets. An equivalent definition was then introduced
by Cedó, Jespers and Okniński in [5] and then in a large survey again by Cedó in [4]. We
will use their definition of a (left) brace throughout this article.

Definition 1.5 ([27, 4]). A brace is a triple (B,+, ·) such that (B,+) is an abelian group,
(B, ·) is a group and for all a, b, c in B:

a(b+ c) + a = ab+ ac.

(B,+) will be called the additive group and (B, ·) the multiplicative group of the brace B.

We now fix B a brace.

Remark 1.6. Note that, if 0 is the additive identity and 1 the multiplicative identity,
then taking a = 1, b = c = 0 yields 1 ∗ (0 + 0) + 1 = 1 ∗ 0 + 1 ∗ 0, thus 1 = 0.

Example 1.7. If (G,+) is an abelian group then (G,+,+) is a brace, called the trivial
brace.

Taking (B,+) = Z/2Z × Z/2Z with (a, b) · (c, d) =
(a+ c, b+ d), a+ b = 0 mod 2

(a+ d, b+ c), a+ b = 1 mod 2
can be checked to be a left-brace, and obviously (0, 0) is the identity of (B, ·).

Proposition-Definition 1.8 ([4]). For any a in B, the map λ : (B, ·) → Aut(B,+)
defined by λa(b) = ab− a for all a, b in B, is a well-defined morphism.

This also gives ab = a+ λa(b). This will be used everywhere to switch between products
and sum of elements.

Example 1.9. From the previous example we have respectively λg = idG for all g in
G, and in (B,+, ·) λ((a, b)) = σa+b where σ permutes the two coordinate of (B,+), and
obviously (0, 0) is the identity of (B, ·).

Lemma 1.10 ([4]). For any a, b in B we have:
(1) λaλb = λa+λa(b).
(2) ab−1 = −λab−1(b) + a
(3) If λa = λb then ab−1 = a− b
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Proof. This first one follows from gh = g + λg(h).
For the second one, −λab−1(b) + a = −ab−1b− ab−1 + a = ab−1.
And then, λab−1 = λaλ

−1
b = λaλ

−1
a = idB. □

Lemma 1.11. For any a, b in B, we have aλ−1
a (b) = bλ−1

b (a).
Moreover, λ−1

λ−1
a (b)λ

−1
a = λ−1

λ−1
b

(a)λ
−1
b .

Proof. Firstly,
aλ−1

a (b) = a(a−1b− a−1) = b− 1 + a = b− 0 + a = b+ a = a+ b = bλ−1
b (a).

Then from the fact that λ : (B, ·) → Aut(B,+) is a morphism we have that λ−1
ab = λ−1

b λ−1
a

so
λ−1
λ−1

a (b)λ
−1
a = λ−1

aλ−1
a (b) = λ−1

bλ−1
b

(a) = λ−1
λ−1

b
(a)λ

−1
b .

□

The following is implicit in [4]:

Lemma 1.12 ([4]). Let S be a subset of a brace (B,+, · such that λs(S) ⊆ S for any s
in S. Then (S,+) is a subgroup of (B,+) if and only if it is a subgroup of (B, ·).

Proof. This follows from the identity ab = a+λa(b) (or equivalently a+ b = aλ−1
a (b)). □

Definition 1.13 ([4]). Let (B,+, ·) be a brace.
• S ⊆ B is a subbrace if it is a subgroup of both (B,+) and (B, ·).
• L ⊆ B is a left ideal if it is a subgroup of (B,+) and λa(I) ⊆ I for all a in B.
• I ⊆ B is an ideal if it is a normal subgroup of (B, ·) and λa(I) ⊆ I for all a in B.

Proposition 1.14 ([4]). Let (B,+, ·) be a brace and I ⊆ B.
• I is an ideal ⇒ I is a left ideal ⇒ I is a subbrace.
• If I is an ideal then the multiplicative quotient B/I has an induced brace structure

(B/I,+, ·).
• Soc(B) = Ker(λ) = {a ∈ B | ∀b ∈ B, ab = a+ b} is an ideal called the Socle of B.

In [14], it was shown that there exists a bijective 1-cocyle Π: ZS → G, i.e.a bijective
map such that Π(gh) = Π(g) · λ−1

g (Π(h)) for any g, h ∈ ZS. This so called "I-structure"
was shown in [27, 4] to be equivalent to the following:

Theorem 1.15 ([14, 4]). The structure group G of a finite cycle set S has a brace structure
given by (ZS,+, ·) such that G with the usual multiplication is isomorphic to (ZS, ·).

Moreover, for any s, t in S, we have λ−1
s (t) = ψ(s)(t).

From the I-structure mentioned above we can write any element of G as g = ∑
s∈S

gss

where gs ∈ Z. Then for any h in G, we have λh(g) = ∑
S gsλh(s) with λh(s) in S.

Because we will work over group rings R[G], we will use Dehornoy’s notation from [10]
to denote s[k] = ks for any k ∈ Z (to avoid confusion with the element k · s ∈ R[G]).

In [10], Dehornoy constructed a finite quotient of the structure group, which he calls a
"Coxeter-like" group:

Theorem 1.16 ([10, 15]). Let S be a finite non-trivial cycle set. Then there exists a
positive integer d such that dS ⊂ Soc(G).

Moreover, for any positive integer l, the quotient Gl := G/⟨(ld)s⟩ admits a quotient
brace structure given by ((Z/ldZ)S,+, ·).
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In particular, this means that the bijective 1-cocycle Π: ZS → G induces a bijective
1-cocycle Π: (Z/ldZ)S → Gl.

The smallest positive integer satisfying the condition of Theorem 1.16 is called the
Dehornoy’s class of S, and the set of positive integers that will satisfy the condition are
the multiple of d.

We denote by T the diagonal map of S defined by T (s) = s∗s. The following Proposition
will be useful:
Proposition 1.17 ([15]). The followings hold:

(i) Let o be the order of T and k any positive integer. Consider the euclidean division
of k by o to write k = o · q + r, then we have ks = sT (s)T 2(s) . . . T k−1(s) =
(os)q(rs).

(ii) The order o of T divides d. In particular, for any integer k and any s in S, we
have λ−1

ks (s) = T k(s) and kds = (sT (s) . . . T o−1(s))k.
As in Coxeter group, we can consider reduced word and state an Exchange lemma (see

[22] for the case of Coxeter groups):
Remark 1.18. Consider a word w = si1 · · · sik over S, and let g be the associated element
of Gl. Then we can write g = ∑

S gss with 0 ≤ gs < ld. Thus the word w is a minimal
expression of g iff k = ∑

S gs.
So for any g in Gl we denote ℓ(g) = ∑

S gs. Then we say that a word w is reduced if
k = ℓ(g) when w represents g ∈ Gl.
Lemma 1.19 (Exchange Lemma). Let s be in S and g in G . Write g = ∑

s∈S
gss with

0 ≤ gs < d. Then either sg is reduced (ℓ(gs) = ℓ(g) + 1) or gs∗s = d− 1 (i.e.(d− 1)(s ∗ s)
left-divides g). Moreover, if it is not reduced, then sg = ∑

t∈S
t̸=s

gs∗tt.

Moreover, we can go from one reduced expression to another only using the quadratic
relations s(s ∗ t) = t(t ∗ s).
Proof. As the given expression of g is reduced, we know ℓ(g) = k, i.e.∑

s∈S
gs = k. Now, by

Proposition-Definition 1.8 sg = s+λs(g) = s+ ∑
t∈S

gtλs(t). Reindexing the sum by setting

t = λ−1
s (u) = s ∗ u for some u ∈ S, we have g = s+ ∑

u∈S
gs∗uu.

This is reduced if and only if (sg)u < d for all u. Because g is reduced, we have gs∗u < d,
so this sg is reduced if and only if 1 + gs∗s < d. Meaning that this is not reduced precisely
when gs∗s = d− 1. In this case, then (sg)s = d, and we conclude by ds = 0.

Moreover, assume we have two reduced expressions as g = si1 · · · sik and g = sj1 · · · sjk .
Using Proposition-Definition 1.8, we can rewrite both expressions as g = ∑

s∈S
gss and this

is unique by the commutativity of (G,+). This rewriting only involves st = s + λs(t) =
λs(t)+s = λs(t)λ−1

λs(t)(s) which preserves length. Moreover, by Theorem 1.15, we have that
the quadratic relations s1(s1 ∗ s2) = s2(s2 ∗ s1) are equivalent to s1λ

−1
s1 (s2) = s2λ

−1
s2 (s1).

Letting s = s1 and s2 = λs(t), we see that st = λs(t)λ−1
λs(t)(s) allows us to go from one

reduced expression to the other only with the quadratic relations. □

We conclude the preliminaries by the following technical lemma:
Lemma 1.20. For any s, t ∈ S the followings hold:

(i) There exists ρs with ℓ(ρs) = d− 1 such that s[d] = sρs. Moreover ρs = (s ∗ s)[d−1].
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(ii) ψ(ρs) = ψ(s)−1

(iii) s[kd] = (sρs)k
(iv) s[d]t = t(t ∗ s)[d]

(v) ρst = (s ∗ t)ρt∗s
(vi) ρs∗tρs = ρt∗sρt

(vii) (s ∗ t)[d]ρs = ρst
[d]

For simplicity we will write γks = ρss
[(k−1)d] = (s ∗ s)[kd−1] (giving sγks = s[kd]).

h) γks t = (s ∗ t)γkt∗s
i) γk1

s∗tγ
k2
s = γk2

t∗sγ
k1
t

In particular, when writing s[kd] = sg we have g = (s ∗ s)[kd−1] = ρss
[(k−1)d] = ρs(sρs)k−1.

This implies that, if s[d] = s1 . . . sd then (s[i])[d] = si . . . sds1 . . . sd−1.
Moreover, as all those equalities are true in G, they respect length and also hold in Gk.

Proof. (i) is follows from Proposition 1.8: s[d] = s+ (d− 1)s = sλ−1
s ((d− 1)s).

(ii) follows from 1 = ψ(s[d]) = ψ(sρs) = ψ(s)ψ(ρs).
(iii) and (iv) follow from the definition of d as we have: s[kd] = (kd)s = k(ds) =

dsλ−1
ds (ds) . . . λ−1

(k−1)ds(ds) = (ds)(ds) . . . (ds) = (ds)k, and s[d]t = ds + λds(t) = t + ds =
t · (dλ−1

t (s)) = t · d(t ∗ s) = t(t ∗ s)[d].
For (v) we have sρst = s[d]t = t(t ∗ s)[d] = t(t ∗ s)ρt∗s, applying t(t ∗ s) = s(s ∗ t) and

canceling the s gives the result.
For (vi) we have ρs∗tρs = ρs∗t + λρs∗t(ρs) = ρs∗t + (d− 1)ψ−1(s ∗ t)(s ∗ s) = ρs∗t + (d−

1)ψ(s ∗ t)(s ∗ s), from the cycle set equation, we have ψ(s ∗ t)(s ∗ s) = ψ(t ∗ s)(t ∗ s),
thus ρs∗tρs = ρs∗t + (d − 1)ψ(s ∗ t)(s ∗ s) = ρs∗t + (d − 1)ψ(t ∗ s)(t ∗ s) = ρs∗t + ρt∗s. By
symmetric, we conclude that this is equal to ρt∗sρt.

(vii) comes from (iv) applied on ρt = (t ∗ t)[d−1] and ψ(ρt) = ψ(t)−1.
(viii) is deduced from the previous ones: γks t = ρss

[kd]t = ρst(t ∗ s)[kd] = (s ∗ t)ρt∗s(t ∗
s)[kd] = (s ∗ t)γkt∗s

Similarly for (ix): γk1
s∗tγ

k2
s = ρs∗t(s ∗ t)[k1d]ρss

[k2d] = ρs∗tρst
[k1d]s[k2d] = ρt∗sρts

[k2d]t[k1d] =
ρt∗s(t ∗ s)[k2d]ρtt

[k1d] = γk2
t∗sγ

k1
t . □

2. Defining the Hecke algebra

We fix a cycle set (S, ∗) of size n, of Dehornoy’s class d, with structure group G and
germ Gl = G/⟨lds⟩ for some positive integer l.

Recall that, by Theorem 1.15 we have a set bijection, more precisely a bijective 1-
cocycle, cp : G → Zn. The inverse of this bijective 1-cocycle is also a bijective 1-cocycle
cp−1 = Π: Zn → G: we have Π(gh) = Π(g)λ−1

Π(g)(Π(h)). In particular, if ψ(Π(g)) = 1,
then Π(gh) = Π(g)Π(h). Moreover, by Theorem 1.16 Π induces a bijective 1-cocycle
Π: (Z/ldZ)n → Gl

Let R be a ring, and note that R[Zn] = R[X±1
1 , . . . , X±1

n ] by identifying the generator
ei = (0, . . . , 0, 1, 0, . . . , 0) with Xi. The set map Π extends linearly to R[X±1

1 , . . . , X±1
n ] →

R[G], sending ∑
i
riX

i1
1 . . . X in

n to ∑
i
riΠ(s1, . . . , s1, . . . , sn, . . . , sn) for some finite indices i

and corresponding integers i1, . . . , in and coefficients ri.
We now proceed to construct the Hecke algebra as hinted before: we pick a polynomial,

apply it to s[d] and use the 1-cocycle Zn → G to show that we have a basis by showing
that the quotients of the associated group rings by appropriate ideals have the same
dimensions.
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From now on, fix a polynomial P ∈ R[X] of degree l > 0 and set P (X) =
l∑

k=0
akX

k.

Remark 2.1. Recall that given an algebra A and R ⊆ A, elements of the two sided ideal
generated by R are of the form ∑

airibi, a finite sum where ai, bi ∈ A, ri ∈ R.

Lemma 2.2. Consider the two-sided ideals IP =
(
P (Xd

1 ), . . . , P (Xd
n)
)

⊂ R[Zn] and JP =(
P (s[d]

1 ), . . . , P (s[d]
n )
)

⊂ R[G]. Then Π induces a bijection IP → JP .

Proof. First remark that P sends a set of generators of IP to a set of generators of JP :
Π(P (Xd

i )) = Π
(∑

akX
kd
i

)
=
∑

akΠ
(
Xkd
i

)
=
∑

aks
[kd]
i =

∑
ak(s[d]

i )k = P (s[d]
i )

where we use that S is of class d with Proposition 1.17 to have s[kd]
i = (s[d]

i )k.
As Π: Zn → G is bijective, its linearization Π: R[X1, . . . , Xn] → R[G] is bijective. But

Π is not a morphism (only a bijective 1-cocycle), so we can’t deduce that Π(P (Xd
i )) =

P (s[d]
i ) to obtain Π(IP ) ⊆ JP . However, we’ll use that Π is a 1-cocycle and S is of

class d, to deduce that, for any 1 ≤ i ≤ n and any f ∈ R[Zn], we have Π(Xd
i f) =

Π(Xd
i ) · λ−1

Π(Xd
i )(Π(f)) = s

[d]
i Π(f).

We’ll prove that Π(IP ) = JP by double inclusion:
Let Q1, Q2 ∈ R[Zn]. By the commutativity of R[Zn] = R[X1, . . . , Xn], we have that

Q1P (Xd
i )Q2 = P (Xd

i )Q1Q2 for any 1 ≤ i ≤ n. Moreover, as S is of class d and Π is
a 1-cocycle, we have Π

(
Xd
i (Xb1

1 . . . Xbn
n )
)

= s
[d]
i Π(Xb1

1 . . . Xbn
n ). Thus Π(Q1P (Xd

i )Q2) =
Π(P (Xd

i ))Π(Q1Q2) = P (s[d]
i )Π(Q1Q2), which is in JP as JP is an ideal. So we have

Π(IP ) ⊆ JP .
Now let f, g ∈ G. Then, by Lemma 1.11, we have for all g ∈ G that gs[d] =

λg(s[d])λs[d](g) = ψ(g)(s[d])g. Thus, in R[G], we have

fP (s[d]
i )g =

∑
akfs

[dk]
i g =

∑
ak(ψ(f)−1(si))[dk]fg.

Write t = (ψ(f)−1(si)) and let Y ∈ {X1, . . . , Xn} be such that Π(Y ) = t. As S is of class d,
we have Π−1(fP (s[d]

i )g) = ∑
akΠ−1(fs[dk]g) = ∑

akY
dkΠ−1(fg) = P (Y d)Π−1(fg), which

is in IP by Remark 2.1. We conclude that JP ⊆ Π(IP ). □

Example 2.3. Let P (X) = 1 + X, g ∈ G and s ∈ S. Write Π(X) = s,Q = Π−1(g),
t = ψ(g)−1(s) and Y = Π−1(t). Then (1+g)(1+s[d]) = 1+s[d]+g+gs[d] = 1+s[d]+g+t[d]g =
(1+s[d])+(1+t[d])g = P (s[d])+P (t[d])g = Π(P (Xd))+Π(Y d)Π(Q) = Π(P (Xd)+P (Y d)Q).

Thus (1 + g)(1 + s[d]) is an element of (P (s)) ⊂ JP , with preimage P (Xd) + P (Y d)Q
in (P (Xd), P (Y d)) ⊂ IP .

The following examples highlight why we need to take polynomials in Xd:

Example 2.4. Let (S, ∗) be the cycle set, with S = {s, t, u} and ψ(s) = ψ(t) = ψ(u) =
(stu) = σ. Then S is of class 3 and s[3] = stu, t[3] = tus, u[3] = ust. Write R[Z3] =
R[X, Y, Z] where Π(X) = s,Π(Y ) = t,Π(Z) = u. Let P (x) = 1 + x2 and consider the
ideals I = (P (X2), P (Y 2), P (Z2)) and J = (P (s[2]), P (t[2]), P (u[2])).

Note that, for Ti ∈ {X, Y, Z} with 1 ≤ i ≤ k,
Π(T1 · · ·Tk) = Π(T1) · σ(Π(T2)) · · · · σk−1(Π(Tk))

as Π is a 1-cocycle. Or equivalently, for ti ∈ {s, t, u},
Π−1(t1 . . . tk) = Π−1(t1)Π−1(σ−1(t2)) · · · Π−1(σ−k+1(tk)).
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Now the element f = tt+ tstt = t(1 + st)t ∈ R[G] is in J , as P (s[2]) = 1 + s[2] = 1 + st.
However, Π−1(tt) = Π−1(t)Π−1(σ−1(t)) = Π−1(t)Π−1(s) = Y X, and similarly Π−1(tstt) =
tΠ−1(u)Π−1(u)Π−1(t) = Y ZZY . Thus Π−1(f) = Y X + Y ZZY = XY + Y 2Z2, and we
claim that this is not an element of J .

To check that XY +Y 2Z2 ̸∈ J , suppose XY +Y 2Z2 = a(1+X2)+b(1+Y 2)+c(1+Z2)
with a, b, c ∈ R[X, Y, Z]. As we have no X2 terms, we deduce a = 0, thus XY + Y 2Z2 =
b(1 + Y 2) + c(1 + Z2). We have a XY which contains no square term, meaning that XY
appears in b or c. But there is no X in Y 2Z2, a contradiction.

We took polynomials in X2 instead of X3, and now an element of I does not come from
J . Thus the use of polynomials in Xd.

On the other hand , if instead of st we had an element g with trivial permutation (such
as g = stu), we would have Π−1(t(1 + g)t) ∈ J . Indeed, t(1 + g)t = tt+ tgt, and as g has
trivial permutation, the preimage of the blue t would have been the same as the preimage
of the red t, allowing for factorization by Π−1(tt). But with st, the blue t gets acted on,
preventing a factorization.

From now on, we fix P in R[X] of degree l > 0. We furthermore assume that al, the
leading coefficient of P , is invertible. We also fix the ideals IP ⊂ R[Zn] and Jp ⊂ R[G] as
in Lemma 2.2.

Let H(S, P ) = R[G]/JP . In H(S, P ) we thus have that

H(S, P ) = R[G]/
(
Ts[ld] =

l−1∑
k=0

−ak
al

Ts[kd]

)
. (3)

To distinguish between elements of G and their corresponding generator of the algebra,
we will write R[G] = R⟨Tg, g ∈ G | TgTh = Tgh⟩.

Lemma 2.5. The followings hold:
(i) We have the isomorphism R[G] ∼= R⟨Ts, s ∈ S | TsTs∗t = TtTt∗s,∀s, t ∈ S⟩

(ii) For any g ∈ Gl, there is a well-defined element Tg ∈ H(S, P ) such that Tg =
Tsi1

· · ·Tsir
whenever si1 · · · sir (si ∈ S) is a reduced expression of g in Gl.

(iii) For any g ∈ G with image g ∈ G, if ℓ(g) = ℓ(g), then the projection R[G] →
H(S, P ) sends Tg to Tg.

Proof. (i) follows from the definition of the group ring R[G] as the free module with basis
G such that TgTh = Tgh for any g, h in G.

For (ii), the Exchange Lemma 1.19 tells us that we can go from one reduced expression
to another only using the quadratic relations. By (i) those quadratic relations are also the
defining relations of a presentation of H(S, P ). Thus Tg does not depend on the choice of
a reduced expression.

Finally, for (iii), let g ∈ G and write g = si1 · · · sir so that ℓ(g) = r. Let g be the
projection of g in G, and assume that ℓ(g) = ℓ(g) = r. Then si1 · · · sir is a reduced
expression of g in G. Thus, by (ii), Tg = Tsi1

· · ·Tsir
is the projection of Tg. □

Recall that,by Lemma 1.20, we have s[ld] = s · (s ∗ s)[ld−1] . Thus, Equation (3) means
that, in H(S, P ) we have

TsT
[ld−1]
s∗s =

l−1∑
k=0

−ak
al

Ts[kd] . (4)

Even though T [ld]
s is not defined in H(S, P ) from Lemma 2.5, we will often abuse notation

and write T [ld]
s instead of TsT [ld−1]

s∗s in H(S, P ).
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Lemma 2.6. As an R-module, H(S, P ) is generated by {Tg}g∈Gl
.

In particular, this means that H(S, P ) is finite dimensional, and that its dimension is
bounded above by #Gl = (ld)n.
Proof. Let s ∈ S and g ∈ Gl. By Remark 1.18, either sg is reduced and then TsTg = Tsg,
or it is not reduced and (s∗s)[ld−1] ≺ g (g = (s∗s)[ld−1]h is reduced in G) by Lemma 1.19.
Thus, if sg is not reduced, by Equation -4), we have TsTg = TsT

[ld−1]
s∗s Th = ∑l−1

k=0
−ak

al
Ts[kd]h,

where s[kd]h is reduced in Gl as k < l and g = s[ld−1]h is reduced. □

Lemma 2.7. The quotient algebra R[Zn]/I is a free R-module of dimension (ld)n and
basis Xj1

1 . . . Xjn
n with 0 ≤ j1, . . . , jn < ld.

Moreover, the linearization of Π provides a bijection between this basis and Gl.
The bijection Π allows us to write an abuse of notation: by T [d]

s we will mean Ts[d] .
Proof. When quotientingR[X1, . . . , Xn] by P (Xd

i ), we can reduce all polynomials of degree
strictly greater than ld− 1. Meaning that R[Zn]/IP has a basis given by Xj1

1 · · ·Xjn
n with

0 ≤ ji < ld.
By considering the powers of such a monomial, this basis is in bijection with (Z/ldZ)n.

By Theorem 1.16, Π gives a bijection (Z/ldZ)n → Gl, finishing the proof. □

Theorem 2.8. H(S, P ) is a free R-module with basis {Tg | g ∈ Gl}, in particular it has
dimension (ld)n.
Proof. From Lemma 2.5 we know that {Tg | g ∈ Gl} generates H(S, P ) as an R-module,
so in particular dimH(S, P ) ≤ (ld)n. We just have to show this family is free, but this
follows from Lemmas 2.2 and 2.7:

Suppose we have a linear combination ∑
g∈Gl

agTg = 0 in H(S, P ). By lifting the
elements g ∈ Gl to g ∈ G we have ∑g∈Gl

agTg ∈ JP . Then, applying Π−1 we obtain∑
g∈Gl

agΠ−1(Tg) ∈ IP . Projecting to R[Zn]/IP , this means that ∑g∈Gl
agΠ−1(Tg) = 0 ∈

R[Zn]/IP . From Lemma 2.7 the family Π−1(Tg) is a basis of R[Zn]/IP , so we must have
ag = 0 for all g ∈ Gl. □

Remark 2.9. Note that in the above proofs we can take a different polynomial P for
each orbit of S under the action of G, as in proof of Lemma 2.2 we just need that two
elements are in the same orbit to obtain that Π(J) ⊆ I. If we denote such polynomials by
P = (Pi)1≤i≤n ∈ R[X]n with deg Pi = li and such that Pi = Pj whenever si and sj are in
the same orbit by the action of G, we obtain the Hecke algebra H(S, P ) with dimension
equal to ∏n

i=1(lid) which is the same as the order of the finite group G/⟨s[lid]
i ⟩1≤i≤n.

With the same reasoning we can also take a different d for each of those orbits, see for
instance [20], but this will not be used in this thesis.

It was chosen to not consider those generalizations (except in Section 4) to avoid heavy
notation and make the proofs easier to read.
Corollary 2.10. Taking P (X) = X2 − pX − q with p, q ∈ R we obtain a definition of an
Hecke algebra for cycle sets with relations of the form

T [2d]
s = pT [d]

s + q

Example 2.11. Take S = {s1, . . . , sn}, σ ∈ Sn and ψ(si) = σ. Then S is of class
d = o(σ) (the order of the permutation), and taking P (X) = X2 −X − 1 we get

H(S, P ) = R

〈
s1, . . . , sn

∣∣∣∣∣ sisσ(j) = sjsσ(i), 1 ≤ i < j ≤ n
(sisσ(i) · · · sσd−1(i))2 = sisσ(i) · · · sσd−1(i) + 1, 1 ≤ i ≤ n

〉
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Remark 2.12. For all g ∈ G, by Proposition-Definition 1.8, we have λg(s[d]) = (λg(s))[d].
So the action of G on R[G] stabilizes J the ideal generated by the P (s[d]), meaning that
G acts on H(S, P ). As ldG ⊂ Soc(G), the action of dG on J is trivial and thus Gl acts
on H(S, P ).
Remark 2.13. We see one important difference between Hecke algebras for Coxeter groups
and for Structure group of solutions: for a finite Coxeter group W with associated Artin–
Tits group A, one can view the Hecke algebra as a deformation of the quotient R[A] →
R[W ]. However, with our approach for solutions, we have to consider the deformation of
a larger quotient R[G] → R[Gl] with l > 1 (if l = 1 then the relations are of the form
T [d]
s = −a0

al
, which is not an interesting deformation).

Moreover, It was shown by Coxeter in [7] that the quotient Bn/⟨sk⟩ is finite if and only
if 1

n
+ 1

k
> 1

2 , thus for n ≥ 6 the quotient is finite only for k = 2 (the symmetric group).
This means that, in the case of Coxeter groups, we can only expect similar definitions of
Hecke algebra with polynomials of degree 2.

However here, we can work over any degree, which highlights the different behaviours
of the germs and associated Hecke algebra for Coxeter groups and structure groups of
solutions.

We conclude the construction of the Hecke algebra for solutions by relating the Hecke
algebra of a solution with the Hecke algebra of its retraction. As in Proposition-Definition
2.16, we denote by S ′ the retraction of S. Then the class d′ of S ′ divides the class d of S
by Lemma 2.17. We deduce the following:
Proposition 2.14. We have a surjective algebra morphism

H(S, P (X)) → H
(
S ′, P

(
X

d
d′
))
.

Proof. The morphism G → G′ linearly extends to R[G] → R[G′]. By Theorem 1.17, for
any s ∈ S and any positive integer k, we have (s[d])k = s[kd]. Moreover, by Proposi-
tion 2.17 we know that d′ divides d, so (s[d′]) d

d′ = s[d]. Thus we get H
(
S ′, P

(
X

d
d′
))

=
R[G′]/

(
P
(
(s[d′]) d

d′
))

= R[G′]/
(
P
(
s[d]
))

. Thus R[G] → H(S ′, P (X d
d′ )) factors through

H(S, P ). □

Example 2.15. If S is of class 4, S ′ of class 2, and we take P (X) = X2 + X + 1, then
we have a morphism H(S,X8 +X4 + 1) → H(S ′, X8 +X4 + 1).

The retraction of a set-theoretical solution to the Yang–Baxter equation was introduced
in [14]. Here, we relate the Hecke algebra of a solution ahd the Hecke algebra of its
retraction.
Proposition-Definition 2.16 ([14, 26]). The retraction of S is the quotient set S ′ by
the equivalence relation s ∼ t ⇔ ψ(s) = ψ(t).

The cycle set structure on S naturally induces a cycle set structure on S ′. Moreover,
we also obtain a morphism of cycle sets S → S ′, and a morphism of braces G → G′ from
the structure brace of S to the one of S ′.
Lemma 2.17. Let d (resp. d′) be the Dehornoy’s class of S (resp. S ′). Then d′ divides d.
Proof. Let s be the equivalence classes in S ′ of s ∈ S. Then, from the fact that G → G′

is a morphism of brace and that S is of class d, we have in G′

λds(t) = ds · t− ds = ds · t− ds = λds(t) = t.



HECKE ALGEBRAS FOR SET-THEORETICAL SOLUTIONS TO THE YBE 11

This means that for all s, we have that ds is in the socle of GS′ . So d is a multiple of d′

(the smallest integer such that dG′ ⊂ Soc(G′)). □

Example 2.18. Consider S = {s1, s2, s3, s4} with ψ(s1) = ψ(s3) = (12)(34) and ψ(s2) =
ψ(s4) = (14)(23). Then S ′ has two elements: t1 = {s1, s3} and t2 = {s2, s4}, and both t1
and t2 act on S ′ by the permutation (12). For instance, t1 ∗t2 = s1 ∗s4 = s1 ∗ s4 = s3 = t1,
and this computation does not depend on the choice of representatives for t1 and t2.

Proposition 2.19. We have a surjective algebra morphism

H(S, P (X)) → H
(
S ′, P

(
X

d
d′
))
.

Proof. The morphism G → G′ linearly extends to R[G] → R[G′]. As d is the De-
hornoy’s class of S, for any s ∈ S and any positive integer k, we have (s[d])k = s[kd].
Moreover, by Proposition 2.17 we know that d′ divides d, so (s[d′]) d

d′ = s[d]. Thus
we get H

(
S ′, P

(
X

d
d′
))

= R[G′]/
(
P
(
(s[d′]) d

d′
))

= R[G′]/
(
P
(
s[d]
))

. Thus R[G] →
H(S ′, P (X d

d′ )) factors through H(S, P ). □

Example 2.20. If S is of class 4, S ′ of class 2, and we take P (X) = X2 + X + 1, then
we have a morphism H(S,X8 +X4 + 1) → H(S ′, X8 +X4 + 1).

3. Anti-involution on the Hecke algebra

Recall that we fixed a cycle set (S, ∗) of size n, of Dehornoy’s class d, with structure
group G and germ Gl = G/⟨lds⟩. We fix a polynomial P in R[x], written as P (X) =
l∑

k=0
akX

k with al invertible. We have previously defined the Hecke algebra for cycle sets
H(S, P ). In this section, the goal is to endow H(S, P ) with an anti-involution derived
from the inversion in the group Gl, in parallel to what is known for finite Coxeter groups
(see [17, Exercise 4.8] for instance).

Proposition 3.1. Suppose a0, al are invertible in R. Then

T−1
s =

l∑
k=1

−ak
a0

T [kd−1]
s∗s .

Moreover (T−1
s )[d] = (T [d]

s∗s)−1.

Proof. From Lemma 1.17 we have, for any positive integer k, s[k] = s · (s ∗ s)[k]. We will
use this to check that

l∑
k=1

−ak

a0
T

[kd−1]
s∗s is indeed the inverse of Ts:

Firstly, Ts
(∑l

k=1
−ak

a0
T

[kd−1]
s∗s

)
= ∑l−1

k=1
−ak

a0
T [kd]
s + −al

a0
TsT

[ld−1]
s∗s . By Equation (4) we have

TsT
[ld−1]
s∗s = ∑l−1

k=0
−ak

al
Ts[kd] . We conclude that

Ts

(
l∑

k=1

−ak
a0

T [kd−1]
s∗s

)
= −al

a0

−a0

al
+

l−1∑
k=1

(−ak
a0

+ al
a0

ak
al

)
T [kd]
s = 1.

Then, let X, Y ∈ R[Zn] be such that P (X) = s and Π(Y ) = s ∗ s. This means that,
for Y ′ = ∑l

k=1
−ak

a0
Y kd−1, we have Π(Y ′) = T−1

s and Π(Y ′d) = (T−1
s )[d]. By Lemma

1.20, we have ψ(Π(Y kd−1)) = ψ((s ∗ s)[kd−1]) = ψ(ρs(s ∗ s)[(k−1)d]) = ψ(ρs) = ψ(s)−1.
Thus, in the sum for T−1

s , all the terms have the same permutation. Now, by Propo-
sition 1.17 we can write s[d] = t1 . . . td where ti = ti−1 ∗ ti−1 and s = t1 = td ∗ td (and
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so t
[d]
2 = t2 . . . tdt1). By Theorem 1.15, we know that Π is a 1-cocycle, meaning that

Π(Y ′Y ′) = Π(Y ′)λΠ(Y ′)(Π(Y ′)) = Π(Y ′)ψ(s)−1(Π(Y ′)). As ψ(s)−1(s ∗ s) = s, we have
ψ(s)−1(T [kd−1]

s∗s ) = T [kd−1]
s = T

[kd−1]
td∗td . Thus Π(Y ′Y ′) = T−1

t1 T
−1
td . By induction, we then

have Π(Y ′d) = T−1
t1 T

−1
td T

−1
td−1 . . . T

−1
t2 = (Tt2 . . . TtdTt1)−1 = (T [d]

t2 )−1. □

Remark 3.2. One has to be careful that T−1
s ̸= Ts−1. Indeed, by Lemma 1.20 and

Proposition 1.17, we have Ts−1 = Tρs = T
[ld−1]
s∗s , which is only one of the terms occurring

in T−1
s .

Example 3.3. Take R = Z[q±1] and the polynomial P (X) = X2 − (q − 1)X − q =
(X − q)(X + 1), which satisfies the hypotheses of Proposition 3.1. Then

T−1
s = 1 − q

q
T [d−1]
s∗s + 1

q
T [2d−1]
s∗s .

Corollary 3.4. For any g in Gl, Tg has an inverse in H(S, P ).

Proof. If g = t1 . . . tr then the inverse of Tg = Tt1 · · ·Ttr is T−1
g = T−1

tr · · ·T−1
t1 . □

In a group G, the map ι sending an element to its inverse is an anti-involution, that is:
ι(gh) = ι(h)ι(g) and ι(ι(g)) = g. This anti-involution is known to extend to the generic
Iwahori–Hecke algebra in the case of Coxeter groups [17, Exercise 4.8]. We show that
the same holds for Hecke algebra of structure groups of solutions to the Yang–Baxter
equation, where the algebra is associated to the polynomial P (X) =

l∑
k=0

akX
k with al

invertible and l > 0.
Theorem 3.5. If P splits over R with invertible roots α1, . . . , αl (not required to be
distinct), and if there exists an anti-involution ι : R → R sending each αi to α−1

i .
Then ι extends to an anti-involution of H(S, P ) by sending Tg to T−1

g for g in Gl.

Proof. Denote by ι̃ the map H(S, P ) → H(S, P ) defined by ι̃( ∑
g∈Gl

cgTg) = ∑
g∈Gl

ι(cg)T−1
g .

We will need that ι must send 1 ∈ R to 1: α−1
1 = ι(α1) = ι(1·α1) = ι(α1)ι(1) = α−1

1 ι(1),
thus ι(1) = 1.

By the hypothesis that P is split we have

P (T [d]
s ) = 0 ⇐⇒ al

l∏
k=1

(T [d]
s − αk) = 0 (5)

For the constant coefficient of P we have a0 = (−1)lal
∏l
k=1 αk, so al

a0
= (−1)l∏l

k=1 α
−1
k .

Multiplying Equation (5) by a0
al

(
(T [d]

s )−1
)l

yields

al
l∏

k=1
(−α−1

k )(T [d]
s )−1(T [d]

s − αk) = 0 ⇐⇒ al
l∏

k=1

(
(T [d]

s )−1 − α−1
k

)
= 0.

This means precisely that ι̃(P (T [d]
s )) = 0.

Recall from Lemma 1.20 the notation γks = (s∗s)[kd−1] and that γk1
s∗tγ

k2
s = γk2

t∗sγ
k1
t . Thus,

by Proposition 3.1 we have

T−1
s∗tT

−1
s =

(
l∑

k=1

−ak
a0

Tγk
s∗t

)(
l∑

k=1

−ak
a0

γks

)
=
(

l∑
k=1

−ak
a0

γkt∗s

)(
l∑

k=1

−ak
a0

γkt

)
= T−1

t∗sT
−1
t

So ι̃(TsTs∗t) = (TsTs∗t)−1 = T−1
s∗tT

−1
s = T−1

t∗sT
−1
t = ι̃(TtTt∗s).
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This shows that ι̃ is a well-defined anti-morphism H(S, P ) → H(S, P ).
It remains to show that ι̃ is an involution. For this, we will show that ι̃(ι̃(Tg)) is an

inverse of ι̃(Tg) = T−1
g , which will imply that ι̃(ι̃(Tg)) = Tg. As ι̃ is an anti-morphism, we

have ι̃(ι̃(Tg))ι̃(Tg) = ι̃(Tg ι̃(Tg)) = ι̃(TgT−1
g ) = ι̃(1) = 1. So ι̃(ι̃(Tg)) = Tg by unicity of the

inverse.
Moreover, by Theorem 2.8, (Tg)g∈G is a basis of H(S, P ). We conclude that ι̃ is an

anti-automorphism. Thus ι is an anti-involution. □

Remark 3.6. In the above proof, one has to be careful that T−1
g ̸= Tg−1 as mentioned in

Remark 3.2. For instance, for the involutivity of ι̃, it is not enough to write ι̃(ι̃(Tg) =
ι̃(T−1

g ) = (T−1
g )−1 = Tg. Indeed, for g = s ∈ S, we have ι̃(T−1

s ) = ∑l
k=1 ι(−ak

a0
)ι̃(T [kd−1]

s∗s ) =∑l
k=1 ι(−ak

a0
)ι̃(T [kd−1]

s∗s ), which does not so obviously simplify to Ts.

Example 3.7. Consider R = Z[q±1
1 , . . . , q±1

l , c±1]. Let P (X) = c(X − q1) . . . (X − ql)
which satisfies the hypothesis of the theorem. It is an analogue of the "generic Hecke
algebra" of a Coxeter group ([17]).

Taking as S = {s, t}, ψ(s) = ψ(t) = 12 with P (X) = (X+1)(X−q) = X2−(q−1)X−q,
we have T−1

s = 1−q
q
t[1] + 1

q
t[3].

We find (T−1
s )[2] = 1

q
T

[2]
t + 1−q

q
and (T−1

s )[4] = 1−q
q2 T

[2]
t + q2−q+1

q2 .
Thus

(T−1
s )[4] − (1

q
− 1)(T−1

s )[2] − 1
q

= 0

4. Semi-simplicity

This section is based on [8, 9, 17] and inspired from the lecture notes [12, 21]. For
details on character theory we refer to [8]. In this section we fix a commutative integral
domain R with field of fractions F , K a field with an algebraic closure K, f : R → K a
ring morphism. Let H = H(S, P ) be the Hecke algebra of a cycle set S, as in Remark 2.9,
with P = (Pi)1≤i≤n ∈ R[X]n, Pi(X) = ∑li

i=0 ai,kX
i such that Pi = Pj whenever si and sj

are in the same G-orbit. From Theorem 2.8, This algebra dimension is equal to the order
of the quotient group Gl = G/⟨s[lid]

i ⟩.

Definition 4.1. Let A be a non-trivial K-algebra. Then A is called,
(i) simple if it contains no proper two-sided ideal,

(ii) semi-simple if it is isomorphic to a direct sum of simple algebras,
(iii) separable if for any extension L/K, L⊗ A is a semi-simple algebra,
(iv) split if it is semi-simple and it is isomorphic to a finite sum of matrix algebras

over K.

An ideal I of an algebra is called nilpotent if there exists a positive integer n such
that In = 0, i.e. any product of n elements of I is 0. The following proposition helps us
characterizing semi-simple algebras:

Proposition 4.2 ([1, Section 9]). Let A be a finite dimensional K-algebra. Then there
exists a unique largest nilpotent two-sided ideal, called the radical of A and denoted rad(A).

Moreover, the followings hold:
(i) rad(A) is the set of elements of A acting as 0 on every simple A-module (modules

without proper submodules)
(ii) rad(A) is the intersection of all maximal left ideals of A
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(iii) A is semi-simple if and only if rad(A) = {0}

In the literature rad(A) is also often called the Jacobson radical of A.
If A is a finite-dimensional K-algebra and a is an element of A, then we denote by

TrA/K(a) the trace of the left-multiplication operator A → A defined by b 7→ ab.
If L/K is a field extension, we denote by AL the L-algebra L⊗ A.

Lemma 4.3 ([8]). Let A be a finite dimensional K-algebra, L/K a field extension. Then
for any a in A, TrAL/L(1 ⊗ a) = TrA/K(a).

Moreover, TrAL/L is equal to id ⊗ TrA/K defined by sending l ⊗ a to lTrA/K(a).

Proof. Let (ei) be a basis of A, so that (1 ⊗ ei) is a basis of AL. For a in A, write
aei = ∑

j
cijei, so that TrA/K(a) = ∑

i
cii. Then (1 ⊗ a)(1 ⊗ ei) = 1 ⊗ aei = ∑

j
cij(1 ⊗ ei),

meaning that TrAL/L(1 ⊗ a) = ∑
i
cii = TrA/K(a).

Moreover, for any x ∈ L, we then have (x⊗ a)(1 ⊗ ei) = ∑
j
cij(x⊗ ei) = ∑

cijx(1 ⊗ ei).

Thus TrAL/L(x⊗ a) = x
∑
i
cii = xTrA/K(a). □

The following lemma will be useful to restrict to the base field K when studying the
trace:

Lemma 4.4. Let A be a finite-dimensional K-algebra such that the bilinear map T : A×
A → K defined by T (a, b) = TrA/K(ab) is non-degenerate. Then for any field extension
L/K the bilinear map TL : AL ⊗ AL defined by TL((l1 ⊗ a), (l2 ⊗ b)) = TrAL/L(l1l2 ⊗ ab)
is non-degenerate.

Proof. Let l⊗a ∈ L⊗A. As T is non-degenerate, there exists b ∈ A such that T (a, b) ̸= 0.
Then, by Lemma 4.3, we have TL((l ⊗ a), (1 ⊗ b)) = TL(l ⊗ ab) = lTrA/K(ab) ̸= 0. Thus
TL is non-degenerate. □

Proposition 4.5 ([8, Exercice 7.6]). Let A be a finite dimensional K-algebra. If the
bilinear form T : A × A → K defined with the usual trace T (a, b) = TrA/K(ab) is non-
degenerate, then A is separable (and thus semi-simple).

Proof. First we know that non-degeneracy is stable by field extension by Lemma 4.4.
So it is enough to show that A is semi-simple. As A is finite dimensional, by Proposition

4.2 A is semi-simple iff rad(A) is trivial. Also from Proposition 4.2, rad(A) is the largest
nilpotent ideal, so any element in it has trivial trace (any element is nilpotent). Thus
as rad(A) is an ideal, if a ∈ radA then, for any b ∈ A we have ab ∈ rad(A) and so
TrA/K(ab) = 0. If T is non-degenerate, this implies that a = 0, finishing the proof. □

Definition 4.6. A trace over a K-algebra A is a map τ : H → K such that τ(ab) = τ(ba)
for any a, b in K. A trace τ is said to be symmetrizing if the map (a, b) 7→ τ(ab) is
non-degenerate.

The following statement is a generalization of Lemma 4.4:

Proposition 4.7 ([3, Proposition 8.7]). If A is a finite-dimensional algebra over a field
K and if τ is a symmetrizing trace over A that is a linear combination of characters, then
A is separable.

In particular, if TrA/K is symmetrizing, then A is separable.
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Corollary 4.8 ([12, Exemple 2.10]). Let G be a group and K a field such that char(K)
does not divide |G|. Then the map τ : K[G] → K defined by τ( ∑

g∈G
rgTg) = r1 (where Tg

is the standard basis of K[G]) is a symmetrizing trace and K[G] is separable.
Proof. We have that τ( ∑

g∈G
rgTg)(

∑
h∈G

r′
hTh) = τ( ∑

g,h∈G
rgr

′
hTgTh) = ∑

g∈G
rgr

′
g−1 = ∑

h∈G
r′
hrh−1 ,

so τ(ab) = τ(ba). Moreover, τ(TgT−1
g ) = τ(T1) = 1, so τ(( ∑

g∈G
rgTg)T−1

h ) = rh is zero for
every h if and only if rh = 0 for every h ∈ G. Thus τ is non-degenerate, and so it is
indeed a symmetrizing trace.

Then, the trace of the algebra K[G] is given on the basis (Tg) by

TrK[G]/K(Th 7→ Tgh) = #{h | Tgh = Th} =
#G, if g = 1

0, otherwise
= #G · τ(Tg).

Thus TrK[G]/K = #Gτ , which is not zero as char K does not divide #G. So τ = TrK[G]/K

#G
is a linear combination of character and finally, by Proposition 4.7, K[G] is separable. □

Our goal is to be able to apply the following theorem:
Theorem 4.9 ([9, Tits Deformation Theorem 68.17]). Let A be a finite dimensional R-
algebra, recall that we chose F = Frac(R) and f : R → K. If K⊗RA and F⊗RA (defined
by f) are separable, then they have the same numerical invariants.

Moreover, let R be an integral closure of R in K and f : R → K be an extension of f .
Then f induces a bijection of irreducible characters Irr(K ⊗ A) → Irr(F ⊗ A).
Theorem 4.10. Let K be a field of characteristic p. Suppose that p does not divide d, and
p does not divide li for any i (the degrees of each polynomial). Let q = (qi,k)1≤i≤n,0≤k≤li be
a family of indeterminates such that qi,k = qj,k whenever si and sj are in the same orbit
and Pi(X) = ∑

i
ai,kX

k ∈ K[q][X]. Then K(q) ⊗ H(S, P ) is separable and has the same
numerical invariants as K[Gl].
Proof. Consider the context of Theorem 4.9 with A = H(S, P ), R = K[q], F = Frac(R) =
K(q). We define f : R → K by f(qi,0) = f(qi,li) = 1 and otherwise f(qi,k) = 0, so that
the specialization given by f yields the algebra K[Gl] = K[G]/(T [lid]

si
− 1).

First, by Corollary 4.8, K ⊗ A = K[Gl] is separable when char(K) does not divide
#Gl =

n∏
i=1

(lid).
Then, as R is an integral domain, F = Frac(R) is a field, so F ⊗A = K(q) ⊗ H(S, P ).

We want to show that TrF⊗A/F is symmetrizing, so that we can apply 4.7 to have that
F ⊗ A is separable. By Theorem 2.8, (Tg)g∈Gl

is a basis of A = H(S, P ). So (1 ⊗ Tg) is
a basis of F ⊗ A. Moreover, TrF⊗A/F specializes to TrK[Gl]/K , which is symmetrizing by
Corollary 4.8. We have TrF⊗A/F ((1⊗Tg)(1⊗Th)) = TrF⊗A/F (1⊗TgTh) = 1⊗TrA/K(TgTh)
by Lemma 4.3. As TrA/K specializes to TrK[Gl]/K which is non-degenerate, TrF⊗A/F is also
non-degenerate and thus symmetrizing.

The conditions of Theorem 4.9 are satisfied, meaning that F ⊗ A = K(q) ⊗ H(S, P )
and K ⊗ A = K[Gl] have the same numerical invariants. □

Corollary 4.11. If H(S, P ) is defined over C[q], then C(q)⊗H(S, P ) and C[Gl] have the
same numerical invariants.

Moreover, we have a bijection Irr(C[Gl]) → Irr
(
C(l) ⊗ H(S, P )

)
.
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Proof. We apply Theorem 4.9 with: R = C[q], A = H(S, P ), F = C(q), K = C = K and
K⊗A = C[Gl]. Theorem 4.10 already tells us that C(q)⊗H(S, P ) and C[Gl] have the same
numerical invariants. Moreover, as K = C = K, the last part of Theorem 4.9 says that the
specialization H(S, P ) → C[Gl] induces a bijection Irr(C[Gl]) → Irr(C(l) ⊗ H(S, P )). □

5. Two-generated Cyclic group

At the beginning of Section A, we mentioned how the naive definition of a Hecke
algebra does not work in general, and we developed a different approach that provides
the expected results. However, we also mentioned that the naive approach does work for
a very particular solution of size. For this solution, the structure group is ⟨a, b | a2 = b2⟩
and the germ is ⟨a, b | a2 = b2, ab = ba = 1⟩ ≃ Z/4Z with algebra R⟨Ta, Tb | T 2

a =
T 2
b , TaTb = TbTa = p(Ta +Tb) + q⟩ with some p, q in R. The goal of this section is to prove

that in this particular case, the Hecke algebra has a basis indexed by the germ.
Moreover, we study a family of groups for which this approach works: torus knot

group, which are the only knot groups (fundamental groups of complements of knots
in the 3-sphere) which are Garside groups ([11, 19, 18]). For n and m integers strictly
greater than 1, the n,m-torus knot monoid (resp. group) is defined by the presentation
Tn,m = ⟨a, b | an = bm⟩, and has as a Garside element ∆ = an = bm.

The goal of this section is to show that Tn,m has a Garside germ given by Tn,m =
Tn,m/⟨ab = ba = 1⟩ ≃ Z/(n+m)Z, and show that we have a Hecke algebra Hn,m(p, q) =
R⟨Ta, Tb | T na = Tmb , TaTb = TbTa = p(Ta + Tb) + q⟩, i.e. that (Tg)g∈Tn,m

is a basis of
Hn,m(p, q).

Proposition 5.1. Tn,m is a Garside group with germ Tn,m ∼= Z/(n+m)Z.

Proof. It is shown in [11, Example 4] that, with the given presentation, Tn,m is a Garside
group, with a Garside element ∆ = an = bm and

Div(∆) = {1, a, . . . , an = bm, bm−1, bm−2, . . . , b}.

The additive length ℓ : Tn,m → N can be obtained by setting ℓ(a) = m, ℓ(b) = n, so that
ℓ(an) = nm = ℓ(bm).

On the other hand,

Tn,m ≃ ⟨a, b | an = b
m
, ab = ba = 1⟩ ≃ ⟨a, b | an = b

m
, a = b

−1⟩ ≃ ⟨a | an = a−m⟩

≃ Z/(n+m)Z = {1, a, . . . , an = b
m
, b
m−1

, b
m−2

, . . . , b}.

Thus we have a bijection Div(∆) → Tn,m sending a (resp. b) to a (resp. b).
Let ℓ be the induced map of ℓ in Tn,m, i.e. ℓ(a) = m, ℓ(b) = n.
To show that Tn,m is a Garside germ of Tn,m, we need to show that

Tn,m ∼= ⟨Tn,m | ∀g, h ∈ Tn,m, g · h = gh when ℓ(gh) = ℓ(g) + ℓ(h)⟩.
We will prove the isomorphism by showing that the presentation on the right reduces to
the presentation of Tn,m as ⟨a, b | an = bm⟩.

As {a, b} ⊂ Tn,m, Tn,m generates Tn,m. Now for the relations, we have to consider the
products aiaj, bibj and aib

j:
We have ℓ(ai) + ℓ(aj) = im + jm = (i + j)m for 1 ≤ i, j ≤ n. If i + j ≤ n, then

ℓ(aiaj) = ℓ(ai+j) = (i+ j)m. Thus we can omit ai for 2 ≤ i ≤ n from the generators. The
same holds for bj, as ℓ(bi) + ℓ(bj) = in + jn = (i + j)n = ℓ(bi+j), if i + j ≤ m. Thus we
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can omit bi for 2 ≤ i ≤ m from the generators. The particular case of bbm−1 = b
m = an

with ℓ(bm) = nm = ℓ(an) recovers the relation an = b
m.

However, the longest length in Tn,m is ℓ(an) = ℓ(bm) = nm. So if i+j > n, ℓ(ai)+ℓ(aj) =
in+ jn = (i+ j)m > nm, so there is no relation for this case. The same also holds for b
whenever i+ j > m.

Finally, ℓ(ai) + ℓ(bj) = im + jn for 1 ≤ i ≤ n, 1 ≤ j ≤ m. But a = b
−1, so ℓ(aibj) =ℓ(a

i−j) = (i− j)m, if i ≥ j

ℓ(bj−i) = (j − i)n, if i < j
. In both cases this is smaller than im+ jn, so there is no

relation.
From this, we conclude that the only relation left that occurs from Tn,m is an = b

m,
showing the desired result. □

Now consider Hn,m(p, q) = R⟨Ta, Tb | T na = Tmb , TaTb = TbTa = p(Ta + Tb) + q⟩ for some
p, q in R.

Lemma 5.2. The followings hold:
(i) In Hn,m(p, q) we have,

(a) TaT kb = pk−1q + pkTa +
k−1∑
i=1

(p2 + q)pk−i−1T ib + pT kb , for 1 ≤ k ≤ m

(b) TbT ka = pk−1q + pkTb +
k−1∑
i=1

(p2 + q)pk−i−1T ia + pT ka , for 1 ≤ k ≤ n

(ii) (Tg)g∈Tn,m
generates Hn,m(p, q)

Proof. For (i) we proceed by induction on k. If k = 1, then TaTb = q+pTa+pTb = p1−1q+
p1Ta + pT 1

b (and the sum is empty). Now assume the equality holds for some 1 ≤ k < m,
then we have TaT

k+1
b = (TaT kb )Tb = (pk−1q + pkTa +

k−1∑
i=1

(p2 + q)pk−i−1T ib + pT kb )Tb =

pk−1qTb + pkTaTb +
k−1∑
i=1

(p2 + q)pk−i−1T i+1
b + pT k+1

b . We have pkTaTb = pk(pTa + pTb + q) =

pk+1Ta + pk+1Tb + pkq and we can rewrite
k−1∑
i=1

(p2 + q)pk−i−1T i+1
b =

k∑
i=2

(p2 + q)p(k+1)−i−1T ib .

Thus, rearranging the terms, we obtain TaT
k+1
b = pkq + pk+1Ta + pk−1qTb + pk+1Tb +

k∑
i=2

(p2 + q)p(k+1)−1−iT ib +pT k+1
b = pkq+pk+1Ta+

k∑
i=1

(p2 + q)p(k+1)−i−1T ib +pT k+1
b . A totally

symmetric argument holds for TbT ka .
For (ii), we can use that T n+1

a = TaT
n
a = TaT

m
b (resp. Tm+1

b = TbT
m
b = TbT

n
a ) and

the apply the relations of (1) to reduce terms of high enough exponents. Thus, with the
relations of (1), any product of generators can be reduced to linear combinations of the
family (Tg)g∈Tn,m

. □

Theorem 5.3. The family (Tg)g∈Tn,m
is a basis of Hn,m(p, q). In particular Hn,m(p, q)

has dimension n+m.
The proof will follow a common strategy for Hecke algebra of finite Coxeter groups, see

[17, Theorem 4.4.6].
Proof. Consider E the free R-module with basis (eg)g∈Tn,m

. We are going to show that we
have an action of Hn,m(p, q) over E induced by Tge1 = eg and this will be enough. Indeed,
assuming we have a linear combination ∑

g∈Tn,m
rgTg = 0 then 0 = (∑g∈Tn,m

rgTg)e1 =∑
g∈Tn,m

rgeg and since E is free over (eg) we deduce that rg = 0 for all g.
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We define the following action of Tn,m on E, and show that it induces an action of
Hn,m(p, q) on E:

• Taeak = eak+1 , for 0 ≤ k ≤ n− 1
• Taebk = pk−1qe1 + pkea +

k−1∑
i=1

(p2 + q)pk−i−1ebi + pebk , for 1 ≤ k ≤ m

• Tbebk = ebk+1 , for 0 ≤ k ≤ m− 1
• Tbeak = pk−1qe1 + pkeb +

k−1∑
i=1

(p2 + q)pk−i−1eai + peak , for 1 ≤ k ≤ n

In particular, Taean = Taebm = pm−1qe1 + pmea +
m−1∑
i=1

(p2 + q)pm−i−1ebi + pebm .
We will to show that this action respect the defining relations of Hn,m(p, q).
To verify that the action is compatible with the relation TaTb = p(Ta +Tb) + q, we only

need to consider the cases of TaTbebk and TaTbeak , as the cases of TbTaebk and TbTaeak

are obtained by symmetry. First assume that k < m, then, on one hand, TaTbebk =
Taebk+1 = pkqe1 + pk+1ea +

k∑
i=1

(p2 + q)pk−iebi + pebk+1 . On the hand, (pTa + pTb + q)ebk =

pTaebk + qebk +pebk+1 = pkqe1 +pk+1ea+
k−1∑
i=1

(p2 + q)pk−iebi +p2ebk + qebk +pebk+1 and those
are easily seen to be equal by just noticing p2ebk + qebk = (p2 + q)pk−kebk .

Then, for k < n, we have TaTbeak = Ta(pk−1qe1 + pkeb +
k−1∑
i=1

(p2 + q)pk−i−1eai + peak) =

pk−1qea + pkTaeb +
k−1∑
i=1

(p2 + q)pk−i−1eai+1 + peak+1 and a bit of rearranging the terms (and
changing indices of sum) show that this is equal to Tbeak+1 = TbTaeak which, again by
symmetry, finishes the case k < n.

Now for k = m we have TaTbebm = TaTbean = Ta(pn−1qe1 +pneb+
n−1∑
i=1

(p2 + q)pn−i−1eai +
pean), so

TaTbebm = pn−1qea + pnTaeb +
n−1∑
i=1

(p2 + q)pn−i−1eai+1 + pTaean . (6)

On the other hand,
(pTa + pTb + q)ebm = pTaebm + pTbebm + qebm . (7)

The last term of Equation (6) and the first term of Equation (7) match, as an = bm. So
we have to show

pn−1qea + pnTaeb +
n−1∑
i=1

(p2 + q)pn−i−1eai+1 = pTbebm + qebn .

On the left we expand Taeb and on the right we expand Tbebn = Tbean , where we respec-
tively obtain

pnqe1 + pn+1eb +
n∑
i=1

(p2 + q)p(n+1)−i−1eai

and

pnqe1 + pn+1eb +
n−1∑
i=1

(p2 + q)p(n+1)−i−1eai + p2ean + qean

which also match as (p2 + q)ean = (p2 + q)p(n+1)−n−1ena .
For TbTaebm the computation is totally similar.
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Then we can easily deduce that the relation T na = Tmb is compatible with the action:
T na eak = T ka ean = T ka ebm = T ka T

m
b e1 = Tmb T

k
a e1 = Tmb eak

The first equality is obtained by Taeak = eak+1 for k < n. The second one by an = bm.
The third equality is obtained by Tbebk = ebk+1 for k < m. The fourth one follows from
the fact that we’ve shown that TaTb = TbTa is respected by the action.

Similarly, we have
T na ebk = T na T

k
b e1 = T kb T

n
a e1 = T kb ean = T kb ebm = Tmb ebk .

Showing that the action of Hn,m(p, q) on E is well-defined, and thus finishing the proof. □

We finish this section by relating this result with a well-known theory for Complex
reflection groups (CRG), following [25]:
Definition 5.4. Let V be a complex vector space of finite dimension r.

A pseudo-reflection is a non-trivial element of GL(V ) that fixes an hyperplane in V .
A complex reflection group of rank r is a finite subgroup of GL(V ) generated by pseudo-

reflections. Moreover, a complex reflection group is called irreducible if it does not stabilize
any proper subspace of V .

The classification of all irreducible complex reflection groups was obtained by Shephard
and Todd in [28], involving an infinite family G(de, e, r) with d, e, r positive integers, and
34 exceptional cases G4, G5, . . . , G37. Moreover, the family of complex reflection groups
whose elements are real matrices correspond to finite Coxeter groups. Thus, they are
often seen as a natural generalization of finite Coxeter groups.

In [25], the authors give a topological definition of the Hecke algebra of a CRG. The
authors then show that for the infinite family G(de, e, r), the Hecke algebra admits a
presentation with generators Ts associated to the pseudo-reflections generating the CRG,
and relations of two types: "braid-like" relations, and relations of the form (Ts−us,0)(Ts−
us,1) · · · (Ts − us,es) for some integer es.

As in the section we focused on the Garside group Tn,m of rank 2 with germ Tn,m ∼=
Z/(n+m)Z, we provide the statement of [25] for the case G(k, 1, 1) ∼= Z/kZ:
Theorem 5.5 ([25, Propositions 4.22-4.24]). For the Hecke algebra of Ck := Z/kZ we
have

H(Ck) ∼= Z[u1, . . . , uk] ⟨T | (T − u1)(T − u2) · · · (T − uk) = 0⟩ .
The specialization of uj at exp

(
j 2iπ
k

)
induces a morphism H(Ck) → C ⊗ Z[Ck].

Moreover, H(Ck) is free of rank k, with basis {1, T, T 2, . . . , T k−1}.
Remark 5.6. It was remarked by Loïc Poulain-d’Andecy ([23]) that, if R = Z, then
Hn,m(p, q) is a specialization of H(Cn+m). Indeed, by Proposition 5.1 we have a bijection
between their respective basis given by T 7→ Ta and T n+m−1 7→ Tb. The relation TaTb =
p(Ta+Tb)+ q can then be rewritten as T n+m = pT n+m−1 +pT + q. Taking a specialization
of (u1, . . . , uk) at the complex roots of Xn+m − pXn+m−1 − pX − q ∈ Z[X] then induces a
specialization H(Cn+m) → Hn,m(p, q).

Appendix A. Finding the correct definition via a diagrammtic approach

The first attempts to adapt the definition from Artin–Tits groups to Yang–Baxter
structure groups would be to quotient R[G] by something of the form Ts[d] = ad−1Ts[d] +
· · · + a1Ts + a0. However, apart from a specific case mentioned in the following sections
(the unique non-trivial solution of size 2), this does not really work. Using the GAP
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package GBNP to compute a non-commutative Gröbner Basis, shows that such quotient
won’t have the correct dimension (it collapses, almost always identifying all generators).
For instance, the GAP code in Program 1 checks, for a chosen cycle set of both size and
class 3, that no intuitive definition works.
#Setup
LoadPackage (" GBNP ");
A:= FreeAssociativeAlgebraWithOne (Integers ,"a","b","c");
gens := GeneratorsOfAlgebra (A);
e:= gens [1];a:= gens [2];b:= gens [3];c:= gens [4];
q :=100;
# Construct all subsets of elements of length < 3
words :=[e,a,b,c,a*a,a*b,b*b,b*c,c*a,c*c];
comb := Combinations (words );
Remove (comb ,1);
sComb := String (comb );
sComb := ReplacedString ( ReplacedString (

sComb ,"(1)*" ,"") ," < identity ... >" ,"e");
sCombx := ReplacedString ( ReplacedString (

ReplacedString (sComb ,"a","x"),"b","y"),"c","z");
sCombB := ReplacedString ( ReplacedString (

ReplacedString (sCombx ,"x","b"),"y","c"),"z","a");
sCombC := ReplacedString ( ReplacedString (

ReplacedString (sCombx ,"x","c"),"y","a"),"z","b");
combA := EvalString (sComb );
combB := EvalString ( sCombB );
combC := EvalString ( sCombC );
l:= Length (combA );
# Compute dimensions of each quotient algebras
for i in [1..l] do
Print ("\r ");
Print(i ,"/" ,l);
x:= combA[i];y:= combB[i];z:= combC[i];
rels :=[a*c-b*b,b*a-c*c,c*b-a*a,

a*b*c-(q -1)* Sum(x)-q*e,b*c*a-(q -1)* Sum(y)-q*e,
c*a*b-(q -1)* Sum(z)-q*e];

KI:= GP2NPList (rels );
GB:= SGrobner (KI);
if DimQA(GB ,0)=27 then
Print ("\n");
Print(Sum(x));
Print ("\n");
Print(Sum(y));
Print ("\n");
Print(Sum(z));
Print ("\n");
PrintNPList (GB);
Print ("\n");
fi;
od;

Program 1. Checking dimensions of quotient algebras
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To do this verification for S = {s, t, u}, ψ(s) = ψ(t) = ψ(u) = (stu) = σ, we consider all
relations of the form

Ts[d] = 2T1 +
∑
g∈G

1≤ℓ(g)≤2

as,gTg, as,g ∈ {0, 1} ⊂ Q

and Tt[d] = σ(Ts[d]),Tu[d] = σ2(Ts[d]) to retain the symmetry. Note that we chose a particular
specialization of the coefficients ai, as we expect the definition of the Hecke algebra to
work for all specializations. We then use the GBNP package functions to compute the
size of the quotient algebra (deduced from a non-commutative Gröbner basis). We are
interested in quotient algebras which are free of rank #G = 33 = 27, so that we can
have (Tg)g∈G as a basis. The only relation for which this happen is Ts[d] = 2T1, i.e. a
non-interesting deformation of the group ring Z[G]. It is also worth to note that, in most
cases, the quotient is small to the point that the generators (Ts)s∈S are identified.

This was tested for many small solutions, in particular the cyclic solutions such that
ψ(S) = σ ∈ Sn, leading to the alternative approach of Section 5. Thus the approach had
to be changed, and we are going to give a brief idea on how the current one was obtained.
The following approach was inspired by a talk given by L. Poulain d’Andecy in Caen [24].

For the Braids groups Bn, whose Coxeter groups are Sn (of type An−1), the generic
Iwahori–Hecke algebra can be defined by the diagrammatic relations as follows:

= (q − 1) + q

which can also be written as

− q = (q − 1) .

Intuitively, this means that we are "mostly" interested in the permutation associated
to the braid, which is related to the fact that the Coxeter group is Sn. In what follows,
we will explain the diagrammatical construction which gives the intuition of a "good"
definition of Hecke algebra.

Definition A.1. Let n be a positive integer. Consider the 2n points in R2 with coordinates
(1, 0), . . . , (n, 0), (1, 1), . . . (n, 1). A family of n curves (Ci : [0, 1] → R2)1≤i≤n is called a n-
strand permutation diagram if there exists a permutation σ ∈ Sn such that Ci(0) = (i, 1)
and Ci(1) = (σ(i), 0).

In this case, Ci is called the i-th strand.
The inverse of σ will be called the permutation associated to the diagram. Equivalently,

the associated permutation can be read as the permutation obtained looking at the diagram
from bottom to top.

Two such diagrams are said to be equivalent if they define the same permutation.
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Example A.2. The following is a 4-strand permutation diagram with associated permu-

tation
(

1 2 3 4
2 3 4 1

)
= (1234):

1 2 3 4

1 2 3 4

If we have two n-strand permutation diagrams, we can stack one on top of the other to
obtain a new one (after rescaling vertically). This is illustrated in this example:

1 2 3 4

1 2 3 4

◦

1 2 3 4

1 2 3 4

=

1 2 3 4

1 2 3 4

∼

1 2 3 4

1 2 3 4

The associated permutation of the first (resp. second) diagram in the product is given by
(1234)−1 = (4321) (resp. ((12)(34))−1 = (12)(34)). And the permutation of their stacking
is (24)−1 = (24), which is also equal to (4321) ◦ (12)(34). The fact that the permutation
of the stacking is the product of the permutation holds in general, as indicated by the
following:

Proposition A.3. There is an isomorphism between the group of n-strand permutation
diagrams up to equivalence and Sn.

Proof. Consider the stacking of two diagrams with associated permutations respectively
σ and τ . The first diagram sends i to σ(i), and the second one sends σ(i) to τ(σ(i). So we
obtain that the permutation of the stacking is the product of the permutation. This im-
plies that, when considering diagrams up to equivalence (defining the same permutation),
the stacking operation is a group law: associativity is clear, the identity is the equivalence
class of diagrams with trivial permutation, and inverses are given by the equivalence class
of diagram with the inverse permutation. In other words, the map sending a diagram to
its associated permutation is a morphism.

Moreover, diagrams are considered up to the equivalence relation of defining the same
permutation. Thus there is a unique equivalence class of diagrams with trivial permuta-
tion, and so this morphism is an isomorphism. □

Definition A.4. Let Γ be a group. A Γ-marked permutation diagram is a permutation
diagram where strands can be marked anywhere by elements of Γ. There can be multiple
ordered elements for one strand. Moreover, a marking by 1 ∈ Γ is considered equivalent
to no marking.
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Two markings of one strand are equivalent if they are identified by the group law as
follows:

g

h
∼ gh

Example A.5. We will later focus on Z and Z/dZ markings. As those groups are cyclic,
we can simplify the markings:

For Z, associate to +1 the marking by • and to −1 the marking by ◦. A marking by a
positive integer n then corresponds to n markings by •, and similarly for negative integers
with ◦.

For Z/dZ, we will only consider markings by • which corresponds to the class of +1.
The following is a Z-marked 3-strand permutation diagram, where the strand 1 to 3 are

respectively marked by 2, 0 and -3:

Remark A.6. We can always move all the markings to the top (or bottom) of a strand.
This also applies when stacking two diagrams, as illustrated in the following for Z/3Z-
marked 3-strand permutation diagrams:

· = ∼ ∼

where the equality is the stacking operation, the first equivalence is the equivalence of
permutation diagram, and the second equivalence is the fact that we have a Z/3Z-marking
(so • • • = 3• = 0)

Consider the action of Sn on Gn by permuting the entries, i.e. σ sends the i-th entry
to the σ(i)-th one, or, equivalently, σ · (g1, . . . , gn) = (gσ−1(1), . . . , gσ−1(n)) .

Proposition A.7. The group of Γ-marked n-strand permutation group is isomorphic to
Γn ⋊Sn, where Sn acts by permuting the entries of Γn.
Proof. Let (g1, . . . , gn, σ) be an element of Γn⋊Sn. Consider the map f sending such an
element to the permutation diagram associated to σ and where the i-th strand is marked
by gi.

We have f ((g1, . . . , gn, σ)(h1, . . . , hn, τ)) = f(g1hσ−1(1), . . . , gnhσ−1(n), στ).
On the other hand, when stacking f ((g1, . . . , gn, σ)) and f ((h1, . . . , hn, τ)) from bottom

to top. The permutation associated to this diagram is στ by Proposition A.3. Moreover,
the top diagrams has an i-th strand that is followed by the σ−1(i)-th strand of the second
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diagram. Thus, the markings on the i-th strand of the diagram after stacking is gihσ−1(i).
From this, we deduce that f is a morphism.

Now, f ((g1, . . . , gn, σ)) is trivial if and only if the diagram has trivial permutation and
markings, so σ = id and g1 = · · · = gn = 1. This means that f is injective.

Finally, consider a diagram with associated permutation σ and markings g1, . . . , gn.
By the definition of f , the given diagram is equal to f(g1, . . . , gn, σ), meaning that f is
surjective. Thus f is an isomorphism. □

We can finally arrive at a diagrammatical representation of structure groups and germs
of solutions, which corresponds to the I-structure of [14, 16] and Theorem 1.15.
Theorem A.8. Let S be a cycle set of size n and class d. Then its structure group G
(resp. germ Gl) is isomorphic to a subgroup of Z-marked (resp. Z/ldZ-marked) n-strand
permutation diagrams. Moreover, an element is uniquely determined by its marking as a
diagram.
Proof. By Theorem 1.15, we know that G embeds as a subgroup of Zn ⋊ Sn such that
restricting to the first coordinate is bijective. Theorem 1.16 gives a similar embedding of
Gl in (Z/ldZ)n ⋊Sn. In both cases, we then apply Proposition A.7 to conclude. □

Remark A.9. A way to interpret the quotient G → Gl through the diagram is to visualize
the strands as having thickness in 3-dimensions, and consider the markings as twists. In
G, a marking as • = +1 ∈ Z can be seen as a twists by 2π

ld
. Then, quotienting to Gl

amounts to considering a full twist as trivial.
Now going back to the analogy with Artin–Tits group, where the focus to obtain the

Iwahori–Hecke algebra was the permutation associated to a braid. Here the permutation
of the braid is an obstacle when we only care about the number of circles/twists (the Γn
part). This is why we will consider deformations which only involves elements with trivial
permutation. so in our case using s[d]. For instance, the analogue of s2 = (q− 1)s+ q will
be s[d]2 = (q− 1)s[d] + q (where (s[d])2 = s[2d]). This means we will consider bigger germs,
like here G2 = G/⟨s[2d]⟩ to be able to obtain a Hecke algebra.

The visualization through marked permutation diagrams allows us to understand an
important difference between the Garside structures of Artin–Tits groups and Structure
groups of solutions to the Yang–Baxter equation. In particular, it yields the intuition on
why the "correct" definition will involve elements with trivial permutation.
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